Curiosidades sobre los astros, propuestas de observaciones sencillas, aspectos cotidianos pero poco conocidos, todo ello con un enfoque didáctico.

miércoles, 13 de diciembre de 2017

Trópicos y círculos polares

Quizás alguna vez te hayas preguntado qué significan y por qué se ponen justamente ahí los círculos polares y los trópicos, esas líneas en los mapas y globos terráqueos que suelen dibujarse a trazos, que alteran y se intercalan en los intervalos regulares cada 20 o 30 grados con que aparecen el resto de los paralelos en líneas continuas.
Indicaciones de los trópicos y los círculos polares. Conviene remarcar que en los mapamundis rectangulares las latitudes no se representan proporcionalmente por consecuencias geométricas en las proyecciones de una esfera en un plano, la zona intertropical aparece reducida proporcionalmente respecto a otras latitudes más altas, y los círculos polares no están completos, incluso el Antártico aparece más recortado que el Ártico. De ello hablé en “El mapa de Peters, una imagen diferente del tercer planeta

Se va acercando ya la fecha del solsticio (de verano en el hemisferio Sur y de invierno en el Norte), y es precisamente ese día cuando los trópicos y los círculos polares cobran significado y razón de ser.

jueves, 30 de noviembre de 2017

Otro reloj de sol "diferente"

Hace unos meses hablé de un reloj de sol muy especial, de diseño propio, que tenemos en el Aula de Astronomía de Durango. Hoy le toca el turno a este otro, también original y muy diferente de lo que suele ser habitual, que así mismo fue ganador de un concurso de materiales didácticos.

Aunque no lo parezca, también esto es un reloj de Sol porque a pesar de su aspecto tiene todas las características de los relojes solares en cuanto a su funcionamiento.
Dos vistas del reloj. En la primera se aprecia su estructura y en la segunda la zona de lectura de la hora. El punto iluminado indica que son las 4 (16h)

La hora aparece indicada en la típica esfera de reloj, con la distribución habitual de la numeración de las horas, pero no aparecen las agujas, que son sustituidas por puntos que se iluminan con la luz del Sol que es transmitida por fibras ópticas: Ahí está la clave.

En esencia tiene dos partes: por un lado un reloj solar más o menos convencional que recoge los rayos solares, y por otra parte el lugar donde se hará la lectura de la hora, unida con la anterior por fibras ópticas, y que en este caso se ha querido hacer en un círculo como un típico reloj de pared.

Si en un reloj solar convencional una sombra se va moviendo y va indicando la hora, en éste será una línea de luz la que irá recorriendo una superficie sobre la que se colocan los extremos de varias fibras ópticas que transmitirán esa luz.
Así en el lugar de lectura aparecen diferentes puntos, que son los otros extremos de las fibras ópticas, en nuestro caso uno cada 15 minutos, que se van iluminando sucesivamente de acuerdo con la hora, como se puede ver en esta secuencia montada en un vídeo.


Este reloj lo diseñé hace ya más de 15 años y lo elaboré con la ayuda de mi alumnado en el Instituto “Angela Figuera” de Sestao. Se intentaron realzar los valores didácticos de manera que su funcionamiento fuera sencillo de comprender y con ello supusiera una motivación para interesarse por la mecánica celeste.

En este modelo el círculo con los puntos indicadores de la hora se ha colocado en la parte superior del tubo utilizado para captar la luz, pero si se utiliza fibra óptica de longitud suficiente podrían separarse los dos elementos del reloj: El captador de luz solar en el exterior, en una terraza, pared o tejado, y el círculo donde se leen las horas en el interior, por ejemplo en la pared de una habitación.

En el anexo “Si quieres saber más”, se dan detalles sobre la elaboración del reloj.

miércoles, 15 de noviembre de 2017

También las sombras en Durango.

Este post es continuación del anterior, que puedes verlo aquí, si no lo has leído.
Si en aquel trataba sobre el movimiento aparente del Sol, en este se recogen aspectos que son consecuencia directa de aquellos: las sombras que se producen y su evolución a lo largo del día y del año.

También aquí aparecerán los módulos interactivos del Aula de Astronomía de Durango donde se pueden simular y visualizar las diferentes situaciones, porque no solo sirven para analizar la evolución en el tiempo de las posiciones del Sol sino que, como se utilizan lámparas que representan a nuestra estrella, también pueden apreciarse las sombras y quizás aquí reside su principal utilidad. Al menos la más original.
Un pequeño listón vertical cuyo extremo está exactamente en el centro de la cúpula proyecta las sombras correspondientes a diferentes horas en solsticios y equinoccios, permitiendo en muy poco tiempo visualizar y resumir situaciones que se producen a lo largo del año.

lunes, 6 de noviembre de 2017

Los caminos del Sol, desde Durango

Hoy día 6 de noviembre de 2017 se cumplen 10 años de la inauguración oficial del Aula de Astronomía de Durango, donde yo trabajo.
Una de las zonas del Aula de Astronomía de Durango. Al fondo a la derecha dos módulos didácticos sobre los que hablo en este post.
Con este motivo se ha emitido una reseña sobre el aula, y en general sobre aspectos didácticos de la enseñanza de la astronomía, en el programa de divulgación científica de Radio Euskadi “La mecánica del caracol”.

Puedes escucharlo entre los minutos 15:45 y 33:05 este audio  y si quieres más información sobre las instalaciones, materiales y actividades que se desarrollan, puedes encontrarla en nuestra web .


Ya hablé del Aula de Astronomía de Durango recogiendo aspectos emotivos personales en un post que titulé “Trabajar en el cielo”, y cité alguno de los módulos didácticos de diseño y elaboración propia, que hay allí y que utilizo en mi labor diaria.
Dije que más adelante detallaría el funcionamiento y utilidades de alguno de ellos, y hoy voy a aprovechar la circunstancia del aniversario del Aula para explicar los dos que para mí son más interesantes por su originalidad (son de diseño y fabricación propia, los elaboré hace ya más de 15 años con ayuda de mi alumnado del IES Sestao, y no he visto nada similar en otros sitios), y por los premios que han obtenido.

Se trata de dos módulos interactivos donde, en una primera utilización, se puede apreciar el recorrido del Sol y las sombras a lo largo del día en solsticios y equinoccios. Uno de ellos está calculado para nuestra latitud y el otro en cualquier latitud.

Tienen varias utilidades aún más interesantes, algunas de las cuales (las más técnicas, referidas a estudios de las sombras) detallaré en el siguiente artículo. Ahora, en unas fotos y dos vídeos, puedes apreciar su funcionamiento básico, en lo que respecta a las posiciones del Sol: la diferente trayectoria sobre nuestro horizonte, altura máxima alcanzada en cada fecha y lugares de salida y puesta.

Sobre unos casquetes esféricos se han situado una serie de lámparas en las posiciones que ocupa el Sol cada dos horas en esas fechas y con unos conmutadores se van seleccionando las diferentes situaciones.
El primero recoge lo que se puede observar desde nuestra latitud (43º Norte)
En este primer módulo, de un tamaño de 1,5 metros de ancho, se ha representado la zona de la bóveda celeste, por donde vemos moverse el Sol en la latitud de Durango con piezas de cartón pintadas de azul; y se ha colocado a escala el horizonte con imágenes reales de los llamativos montes que se ven desde la zona, con la orientación adecuada.
Sobre la bóveda se sitúan las lámparas que representan las posiciones del Sol y con unos conmutadores giratorios que aparecen en primer plano en la imagen se elige la fecha y la hora deseadas, encendiéndose la lámpara correspondiente.

domingo, 5 de noviembre de 2017

Periodicidades o frecuencias en los eclipses

Cuando se habla de la periodicidad de los eclipses siempre se cita el ciclo de SAROS de 18 años y 11 días, al cabo de los cuales se repiten los eclipses de manera parecida. Pero es un periodo demasiado largo para ponerte ejemplos que te resulten cercanos, su justificación es matemática y poco intuitiva: Eso de los múltiplos comunes de los periodos, pero que además no son totalmente exactos, y SAROS tampoco lo es de manera absoluta.


Dejo a SAROS para otra ocasión, y a otros ciclos aproximados que no suelen citarse, porque hay aspectos en el tema de las frecuencias de estos fenómenos más sencillos, intuitivos y didácticos con ejemplos claros en los eclipses de 2017, que quiero resaltar y que espero te hagan entender de una manera fácil el porqué de las fechas y los tipos de eclipses que se producen en 2017.

Fases y eclipses
Para entender los diferentes razonamientos hay que aclarar una circunstancia que aunque es casi evidente, muchas veces suele olvidarse: Los eclipses no ocurren en cualquier fase lunar.

Como se aprecia en el siguiente gráfico, para que haya eclipse de Sol, la Luna se tiene que colocar entre el Sol y la Tierra de manera que su sombra incida en nuestro planeta. Esta es la situación de luna nueva. (De manera análoga, para que se produzca un eclipse de Luna ésta debe estar necesariamente en fase llena

Situación esquemática de las posiciones de la Luna en cada una de las fases y en los eclipses, en planta, visto desde el Norte. 

Pero no siempre que hay luna nueva habrá eclipse solar (ni tampoco en cada luna llena un eclipse lunar) porque el plano de la órbita de nuestro satélite está inclinado respecto a la eclíptica, habitualmente la Luna pasa un poco por encima o por debajo, y su sombra no pega en la Tierra.
Para que ocurra un eclipse de Sol tienen que darse dos circunstancias: Luna nueva y la Luna en la cercanía de uno de los nodos de su órbita. Los nodos son los puntos de cruce de las órbita de la Luna con el plano orbital de la Tierra dos órbitas, que están en el plano orbital de la Tierra. (Lo mismo, pero con Luna Llena para que haya eclipse de Luna)

Representación en PERSPECTIVA.El gráfico es solo un esquema didáctico y no se han mantenido las proporciones ni en los tamaños ni en las distancias entre los astros.
En la situación A no habrá eclipse porque en fase llena y nueva la Luna no se sitúa en los nodos. En luna nueva su sombra pasa por debajo de la Tierra y en luna llena la Sombra de la Tierra pasa por debajo de la Luna.
En la situación B esas fases ocurren en los nodos, por lo tanto con la Luna a la misma altura que la Tierra y se producirían eclipses.

Como los astros no son un punto y tienen un cierto tamaño, no es necesario que la Luna llena o nueva esté exactamente en el nodo para que el eclipse se produzca. Debe estar cerca pero hay un cierto margen que no siempre es el mismo porque varía un poco según la distancia de nuestro satélite (cercanía al perigeo)



Para ilustrar las siguientes explicaciones pongo ahora un gráfico que recoge las fechas de todos los eclipses desde 2011 hasta 2020, y a partir de él se irán comprobando distintas circunstancias relativas a las frecuencias de los eclipses.
Le llamaré “GRÁFICO DE LA DÉCADA” y me voy a referir a él varias veces. 
La escala es semestral, en vez de anual como parecería lógico, porque se ajusta mejor a los “periodos” de los eclipses y permite seguir mejor la evolución consecutiva de todos ellos. Por este mismo motivo he trasladado hacia la izquierda una porción correspondiente a 2020 y parte de 2019.

Este gráfico completa al que realicé hace un año para explicar las frecuencias de los eclipses de Luna, y ahora lo he ampliado también con los de Sol.

Las fechas del gráfico y la colocación de cada eclipse no son rigurosamente exactas (solo son muy aproximadas), debido a la diferente duración de los meses y el solapamiento de éstos.


Cada medio año, eclipses.

Hace casi un año expliqué por qué en la mayoría de los casos, 6 lunaciones después de un eclipse de Luna, (unos 5 días menos de los 6 meses dependiendo del número de días de esos meses) se vuelve a producir otro, aunque hay excepciones, y en ocasiones ocurre al cabo de 5 lunaciones o incluso en dos lunaciones seguidas. Después de 7 u 8 eclipses lunares que siguen la norma, se producen las excepciones
Con los eclipses de Sol ocurre lo mismo, y aquí pongo un gráfico y una explicación similar al que utilicé con los de Luna:

Aunque desde nuestro punto de vista y lo que se observa en los eclipses de Sol y de Luna corresponde a dos situaciones muy diferentes, en realidad la geometría es análoga porque en unos la sombra de la Luna toca la superficie terrestre y en los otros es la sombra de la Tierra la que incide en la Luna.

El siguiente gráfico es solo una primera aproximación a la situación real para ilustrar los periodos aproximados de 6 meses, que más adelante iré matizando.
  


En la situación 1 la luna nueva está en el nodo y hay eclipse de Sol. Los siguientes meses, está por encima de la eclíptica, su sombra pasa por encima de la Tierra y no hay eclipse (por ejemplo en 2).
La situación 3 ocurre 6 lunaciones después de la 1, casi 6 meses después. la Luna vuelve a estar cerca del nodo y nuevamente hay eclipse.
En las siguientes lunas nuevas la sombra pasa por debajo de la Tierra y no hay eclipse (por ej. en 4)

Además, como voy a detallar enseguida, los eclipses se producen siempre al menos por parejas (uno de Sol y otro de Luna) o a veces por tríos, con 14 o 15 días de diferencia entre uno y otro, y por eso habitualmente cada 6 meses (un poquito menos) tenemos varios eclipses seguidos.

Según parece deducirse del gráfico anterior, la frecuencia debería ser de medio año porque es cuando la línea de los nodos vuelve a alinearse con el Sol. Evidentemente no pueden ser 6 meses exactos porque la luna nueva (o llena) no se repite al cabo de ese tiempo, sino habitualmente los mencionados 5 días antes. Pero hay otro factor que hace que se adelanten un poco más y en ocasiones el intervalo sea de 5 lunaciones en vez de 6, y por eso se van adelantando poco a poco en el calendario. En caso contrario, ¡todos los años sería en febrero y agosto como ahora!

Esto es porque la orientación de la línea de los nodos, que se ha supuesto invariable en el gráfico para una primera explicación aproximada, en realidad va girando (en sentido horario visto desde el Norte) dando una vuelta completa cada 18.6 años, y en cada ocasión vuelve a estar alineada con el Sol un poco antes.
De una vez a otra esta diferencia es pequeña pero se va acumulando, y en un momento se produce un salto, siendo el intervalo de un eclipse de Sol a otro de Sol (o de uno de Luna a otro de Luna) de lunaciones en vez de 6.
En el "gráfico de la década" se ve que esto ocurrió en 2011, 2013 y 2017.


La justificación teórica de esta excepción quizás sea demasiado técnica y lo paso al final, al otro anexo recomendado "solo para entendidos", para que nadie se aburra ahora y deje de leer lo que viene a continuación, que en más interesante y sencillo.

Como se verá ahora, hay otras excepciones donde la diferencia es de solo una sola lunación.

Aunque el periodo del movimiento de la línea de los nodos es de 18.6 años, como son dos veces cada año cada 9 años aproximadamente se vuelven a repetir en los mismos meses, como se ve en el “gráfico de la década” que en 2020 vuelven a ocurrir en torno a junio y diciembre, como ocurrió en 2011.

Por parejas

Siempre que hay un eclipse de Sol, cuando 14 o 15 días después sea luna llena (o en la anterior, dos semanas antes), hay eclipse de Luna porque si en el eclipse solar nuestro satélite estaba en el nodo o cerca de él, dos semanas después la Tierra se ha movido un poco en traslación pero no demasiado, estará cerca del otro nodo y, como hay un margen, todavía le pillará en situación de eclipse.

Concretando un poco más:
- Si en el eclipse de Sol la Luna nueva estaba un poco antes del nodo (en 1), dos semanas después la Luna llena estará un poco después del otro nodo (en 2) y habrá eclipse de Luna, como se representa en el siguiente gráfico:

- Si, por el contrario, en el eclipse de Sol la Luna nueva estaba un poco después del nodo, dos semanas antes la Luna llena había estado un poco antes del otro nodo y en este caso el primer eclipse de la pareja fue el de Luna. Análogo que el anterior pero al revés.

- Si en el eclipse de Sol la Luna nueva está casi exactamente en el nodo (en el siguiente gráfico en 2), tanto la Luna llena anterior (1), como la siguiente (3) están cerca del otro nodo pero no demasiado, por lo que no llega a penetrar en la sombra, se queda en la penumbra y se produce un eclipse penumbral. 

En este último caso, en vez de una pareja de eclipses seguidos, tenemos un trío, 
De manera similar, si es el eclipse que se produce muy cerca del nodo es de Luna, dos semanas antes y después habrá eclipses de Sol, pero solo parciales y será otro trío.
En estos casos los dos extremos del trío corresponden a eclipses de un mismo astro (Sol o Luna), separados por una sola lunación.

Aunque los episodios de tres eclipses seguidos parecen más atractivos por su mayor número, en realidad no es así porque los dos de los extremos son malos (penumbrales si son de Luna o si son de Sol, solo parciales). Pero también tienen algo bueno, y es que el eclipse central de los tres, será total y en principio de mayor duración de lo habitual, aunque en esto puede tener más influencia la cercanía de la Luna a su perigeo.
Esta circunstancia se visualiza en el gráfico que apareció antes, el "gráfico de la década", donde en 2011, 2013 y 2020 hay tríos con un eclipse “bueno” escoltado por dos “malos”

Otro detalle a tener en cuenta es que aún cuando sigan la norma general de 2 pares de eclipses separados por 6 lunaciones, y por tanto en un año natural serían de esperar 4 eclipses, como ocurre en 2017, pueden ocurrir 5 si el primero es al comienzo de enero porque 12 lunaciones después todavía no ha acabado el año y da tiempo para otro más.

Cuando aparecen las excepciones de los "tríos", puede haber 6, o incluso 7 eclipses en un año, si coinciden  varias circunstancias:  Cuando hay un trío, se produce un adelanto (eclipse al cabo de 5 lunaciones en vez de 6) con lo que si a principio de año se produce la primera pareja de eclipses, da tiempo a que haya otra antes de acabar diciembre. Esto ocurrió en 1982, con eclipses en las fechas 9-1, 25-1    /    21-6, 6-7, 20-7    /    15-12, 30-12 ,  en cada grupo primero el de Sol, pero lógicamente los de Luna fueron buenos, todos ellos totales, y los de Sol malos, todos parciales.   

Otros aspectos destacables


- Eclipses de Sol anulares y totales:
A estos eclipses se les suele llamar “centrales” porque desde algún lugar de la Tierra la Luna pasa justo por en centro del Sol, y ocurrirán cuando nuestro satélite esté muy cerca del nodo. Si se diese una exactitud total se vería desde el ecuador, pero hay margen por el tamaño de la Tierra y se pueden ver totales desde otras zonas.

El que sea total o anular, depende del tamaño aparente de los dos astros vistos desde la superficie de la Tierra. Por una tremenda casualidad, ambos se ven casi del mismo tamaño (el Sol es unas 400 veces más grande, pero está unas 400 veces más lejos).
Pero las distancias no son siempre las mismas ya que las distancias varían. Si la Luna está en el perigeo, al estar un poco más cerca se verá un poco más grande y tapará completamente al Sol, pero no lo hará si está en el lugar más lejano (apogeo)
También, en menor medida, el tamaño aparente del Sol varía, viéndose más grande cuando la Tierra está en el perigeo o cerca (primeros de enero)

Estas dos circunstancias favorecen el que vayan alternando total y anular, y por tanto que los dos eclipses de un mismo año sean de diferente tipo, porque en 6 meses el efecto perihelio afelio es el contrario y el perigeo apogeo casi también.

Sin embargo la llamada linea de los ábsides de la órbita lunar (que pasa por el perigeo y el apogeo) no se mantiene fija y va girando ligeramente. Como este factor es el que más influye, aunque en la mayoría de los casos se produce la mencionada alternancia, hay muchas excepciones al tener en cuenta los dos factores (cuando no ocurren muy cerca del perigeo – apogeo) y que casualmente se han concentrado en estos años lo puedes ver en el manido “gráfico de la década “que en este aspecto no es nada representativo respecto a otra décadas.
Aunque actualmente se está produciendo una de esas excepciones (dos anulares seguidos) por casualidad se produce la alternancia considerando el año natural, tanto el año pasado como éste: En 2016 Total-Anular  y en 2017 Anular-Total.

Hay otro tipo de eclipse de Sol, el llamado híbrido que en esta década ocurrió en noviembre de 2013 que se produce cuando en el recorrido de la Sombra de la Luna por la superficie terrestre en un tramo ocasiona un eclipse total y en otros tramos anular. 
En esos casos vértice del cono de sombra de la Luna está muy cerca de la superficie terrestre, a veces la toca y a veces no, ya que debido a la curvatura del globo terrestre la Luna puede estar ligeramente más cerca o más lejos de dicha superficie.


Ciclos buenos y malos

Está claro que los eclipses parciales de Sol y los penumbrales de Luna, que ocurren cuando nuestro satélite no está demasiado cerca del nodo, son mucho menos espectaculares e interesantes que los otros. Como los desajustes se produce poco a poco, esto da lugar a que varios eclipse “buenos” vayan seguidos en series de 4 o 5 y los “malos” también, afortunadamente en número algo menor. Hay alguna excepción porque un eclipse puede ser de un tipo u otro “por muy poco” y los factores que intervienen son varios, cada uno con diferente periodo.
Esto también se puede observar en el “gráfico de la década”.

Las épocas buenas de los de Sol, corresponden con épocas malas de los de Luna por las razones que he dado al hablar de los “tríos”, y viceversa.

Como se ha dicho antes, considerando independientemente los de Sol y los de Luna, lo más habitual es que ocurran eclipses al cabo de 6 lunaciones, pero a veces hay saltos en esa regularidad y se producen al cabo de 5. Estos saltos ocurren después de 7 u 8 eclipses “regulares” que siguen la norma de las 6 lunaciones, y van alternando estas excepciones los de Luna y los de Sol que nunca ocurrirán en ambos a la vez.
Esto se puede apreciar también en el “gráfico de la década”.

Todo ello lleva a que el año que los de Sol son muy buenos, los de Luna sean malos; como ocurre este año 2017 (lo que también se puede apreciar ver en susodicho gráfico), y viceversa.
También aquí puede haber pequeñas excepciones y hay que señalar que hay matices que el gráfico no recoge. Aunque todos los totales eclipses de Sol pueden considerarse “buenos”, unos lo son mucho más que otros, tienen una duración y se pude notar una mayor oscuridad en el momento central porque la Luna está cerca y el Sol lejos.

Un truco para acordarte.

Es posible que te hayan entrado ganas de ver la próxima pareja de eclipses de este año desde el mejor sitio posible aprovechando que quizás en agosto tendrás vacaciones. Sabes que son en agosto porque los ha habido ahora en febrero (6 meses antes) y leíste aquí que este año no hay excepciones. Es posible que un día pases por una agencia de viajes, veas una oferta de esas “solo si lo compras hoy” y te lances.

Pero claro, no te acuerdas de las fechas exactas y no quieres que te pase como a la amiga de mi mujer, que nos la encontramos de improviso en China en una tienda de jarrones, le comentamos que habíamos ido a ver el eclipse, “-Que no sabía nada, ¿Cuándo es?”  “- El próximo jueves” “-Vaya! y yo me vuelvo el miércoles”

Not problem. Como encima de la mesa de la agencia tendrán un calendario, que casi con toda seguridad recogerá las fases lunares,.. A tiro fijo fijo: busca la luna nueva de agosto y ese día el eclipse de Sol, “- Billete para EEUU”.
Y si andas bien de dinero y aún quieres más, el eclipse de Luna, el día de luna llena. “- Billete para la India”.

Que tengas buen viaje(s)




Solo cinco lunaciones después
Aquí recojo la explicación de cómo el leve movimiento de retrogradación de los nodos (giro de la línea de los nodos) provoca las irregularidades en los periodos de 6 lunaciones y se produce a veces la excepción y hay un eclipse al cabo de solo 5.

Hago la explicación con los eclipses de Luna. Con los de Sol la situación es análoga porque, aunque lo que vemos desde aquí son dos aspectos totalmente diferentes, geométricamente, y salvando las diferencias de tamaño de los conos de sombra y penumbra producidos por la Tierra y la Luna, las circunstancias son las mismas.
No todos los ciclos son idénticos porque intervienen otros factores, pero son muy similares. Este sería un ejemplo típico.

Como se dijo, para que se produzca un eclipse no es necesario que la Luna esté exactamente en un nodo, y hay un cierto margen.
En un primer gráfico, en perspectiva, se representa la órbita de la Luna y diferentes posiciones de nuestro satélite en las situaciones tope para que se puedan producir los diferentes tipos de eclipses.

Lo más importante son las distancias TP y N que representan las separaciones máximas entre el nodo y la Luna, en cada uno de los casos.
Si hay eclipse total de Luna, ésta estará más cerca del nodo que el ángulo T (en rojo)
Si hay eclipse parcial, la Luna estará más cerca del nodo que el ángulo P (en naranja)
Si hay eclipse penumbral, la Luna estará más cerca del nodo que el ángulo N (en verde)



Es solo un gráfico didáctico y no están a escala ni los astros, ni las distancias, ni los intervalos T, P o N y se ha exagerado el ángulo entre los planos de las órbitas lunar y terrestre (la eclíptica).

La línea de los nodos va girando, pero aquí se ha mantenido fija y se ha supuesto el Sol en diferentes situaciones cuando hay luna llena, y por eso aparecen los conos de sombra en diferente orientación.
Solo se ha dibujado el cono de penumbra en el último caso porque en los otros no es importante, y para no recargar más el gráfico.
  
En el segundo gráfico, en planta, se representan las posiciones de la Luna en sucesivos eclipses, cada 6 lunaciones hasta que se rompe la regularidad y ocurre al cabo de solo 5 lunaciones.
Está recortado y ampliado para apreciar los detalles. En la esquina aparece completo.



Los intervalos T, P y N se han tomado a ambos lados del nodo.
La posición de nuestro satélite en luna llena se va separando cada vez más del nodo en los sucesivos eclipses (unos 5º) porque la Tierra se encuentra en diferente lugar de su órbita (de un eclipse a otro unos 5º en sentido directo ), pero sobre todo porque la línea de los nodos va girando (unos 10º en sentido retrógrado -como las agujas del reloj-). 

Se han representado las situaciones (A, B, C, D, E) cada 6 lunaciones, una más (X) en el caso de la excepción de eclipse tras solo 5, y la siguiente (Y) otra vez 6 después.

En A la Luna está justo en el nodo y se produce un eclipse total, lo mismo que en B, donde ya se ha separado un poco (del otro nodo). En C será total o quizás parcial (depende de las posiciones del perigeo y perihelio), en D será penumbral y en E quizás ya no habrá eclipse (podría haberlo penumbral –caso trío-). 
Pero antes en X, 5 lunaciones después de E, hay eclipse penumbral porque se ha acercado al nodo por el otro lado. Ahí, en X ocurre el salto de las 5 lunaciones. El siguiente eclipse en Y, 6 lunaciones después de (después de E) será también penumbral.
Dependiendo de que en E haya eclipse o no, la uniformidad de los 6 seguirá la secuencia 5-1-5 o solamente 5. (ver el gráfico de la década)
Este proceso (de A a X, o de A a E) representa solo la mitad de un ciclo. Antes de A las situaciones serían simétricas.

En este último gráfico, aunque las distancias y tamaños tampoco están a escala, la separación angular entre las distintas posiciones y las sucesivas orientaciones de la línea de los nodos corresponden, con bastante aproximación, a los valores reales. 

viernes, 27 de octubre de 2017

Mirando la Luna

Mañana 28 de octubre de 2017 se celebra el día internacional de la observación de la Luna y con ese motivo asociaciones de astrónomos de todo el mundo sacarán los telescopios a la calle invitando a la gente a mirar el satélite del tercer planeta.
Imagen invertida. Obtenida a través de telescopio el 30-7-17
Es una más de esas celebraciones que ya han llenado el calendario, algunas reivindicativas, otras solo conmemorativas, pero en esta ocasión es nuestro tema y no puedo dejarlo pasar.
En realidad se trata de fomentar la observación del cielo utilizando para ello el objeto más vistoso para el público no iniciado, que es sin duda nuestro satélite. Es una manera atractiva para interesar a la gente en general, por los astros y la exploración espacial.
Esta magnífica imagen, obtenida por José Manuel Perez Redondo, es una muestra del atractivo que tiene siempre la Luna observada a través de un telescopio.

domingo, 15 de octubre de 2017

Desde más arriba

Hoy, como en muchas otras ocasiones,  también voy a escribir sobre cómo vemos los astros desde el tercer planeta, pero desde un poco más arriba de lo habitual: cosas que podemos ver desde un avión en vuelo.

Y también como en muchas otras ocasiones, ha sido una experiencia personal inesperada lo que me ha impulsado a escribir esto. Porque aunque uno haya realizado numerosas observaciones del cielo y crea haberlo visto casi todo, en ocasiones hay circunstancias y casualidades que se alían para ofrecerte algo diferente.

El pasado 5 de octubre para acudir, representando a la Asociación para la Enseñanza de la Astronomía, a la presentación de un proyecto didáctico patrocinado por la Agencia Espacial Europea, tomaba una avión en el aeropuerto de Madrid que tenía su salida a las 19:35 con destino a Granada y, como siempre que puedo elegir, tenía mi asiento junto a la ventanilla, en este caso al lado izquierdo (asiento A)
Embarcando en Madrid
Justo en el momento de embarcar el Sol nos regalaba sus últimos rayos, y ya cuando el avión despegó con unos minutos de retraso se había ocultado por el horizonte, despidiéndose hasta el día siguiente. O eso creía yo.

miércoles, 4 de octubre de 2017

Mirando un punto azul pálido

En el último post que publiqué antes del índice puse esta imagen:


Créditos: Nasa/JPL

Sin embargo no mencioné la razón por la que se ha hecho famosa, que no ha sido tanto la espectacular visión de los anillos de Saturno a contraluz, que desde aquí nunca se pueden  observar, como algo que apenas se intuye y por eso lo he señalado con una flecha en la imagen, que es nuestro planeta, un débil punto azul pálido, una cosita de nada.

jueves, 14 de septiembre de 2017

Una cosa pequeñita llamada Dafne

Mañana 15 de septiembre de 2017 la misión Cassini terminará su largo periplo de 13 años desde que llegó a las inmediaciones de Saturno, sumergiéndose en la atmósfera del fotogénico planeta y desintegrándose. 
Además de suministrar importantes datos científicos que nos permite conocer cada vez mejor las características del sexto planeta, de sus anillos y de sus satélites, nos ha dejado imágenes impresionantes. Seguramente habrá sido la misión espacial que ha dado lugar a una galería de imágenes más espectacular por su cantidad, variedad y belleza.
Ilustración artística de la Nave Cassini en las cercanías de Saturno. (NASA/JPL Caltech)
Pongo a continuación varios enlaces en los que puedes encontrar información sobre la misión Cassini (los dos primeros de la NASA y el tercero un audio de Radio Euskadi), pero te sugiero que las dejes para luego, porque hoy quiero hablar solo de un minúsculo capítulo de esa historia.
Como lo cortés no quita lo valiente, y teniendo en cuenta que recientemente he criticado la política de divulgación seguida por la agencia espacial norteamericana con motivo del pasado eclipse de Sol, en este caso debo decir: “Gracias NASA”

- Aquí una información exhaustiva de la misión (en inglés)
-En esta otra, la galería de imágenes:
https://www.nasa.gov/mission_pages/cassini/images/index.html
- Si quieres escuchar un breve resumen de la misión y al científico principal de Cassini en la ESA (Agencia Espacial Europea) Nicolas Altobelli, explicando el final de la misma, a partir del minuto 30:40 en este audio: http://www.eitb.eus/es/radio/radio-euskadi/programas/la-mecanica-del-caracol/audios/detalle/5066364/arqueologia-fantastica-gran-final-cassini-virus-oceanicos/

En cualquier caso, para ir abriendo boca te pongo varias imágenes obtenidas por Cassini, que he seleccionado de entre las muchas que me han gustado especialmente, antes de meterme con el tema de hoy.
Saturno a contraluz con el Sol detrás.   (NASA/JPL-Caltech/SSI)
Los extraños satélites Hiperión y Pan con aspecto de esponja, y ravioli o ala de sombrero  respectivamente. Hay otro satélite (Atlas) de aspecto muy parecido a Pan (NASA/JPL-Caltech/SSI)
 Aunque parece un eclipse anular, el anillo luminoso es la atmósfera de Titán casi a contraluz, con los anillos de Saturno delante y Encélado en primer plano. En estos dos satélites se han descubierto, gracias a los datos aportados por la misión Cassini-Huygens, condiciones que incluso podrían hacer pensar en la posibilidad (de momento es solo una elucubración poco probable) de existencia de vida microbiana. (NASA/JPL-Caltech/SSI)

Pero a mí personalmente, lo que más me ha impresionado de todo lo que en estos 13 años nos ha mostrado Cassini ha sido el descubrimiento de un satélite muy pequeñito llamado Dafne.
Este satélite de apenas 7 kilómetros se mueve entre los anillos de Saturno, en la llamada división Keeler.
Ya lo conocía “de oídas” antes de ver las imágenes de Cassini, y alguna vez he hablado de él en alguna conferencia, de su órbita situada en un hueco del anillo A (el más exterior de los dos anillos más brillantes) y de las interacciones que tiene, al igual que otros satélites pastores, con las partículas de los anillos. Pero las fotos que ha obtenido la sonda que ahora finaliza su viaje me parecen sencillamente impresionantes. No las imágenes del satélite en sí, sino de “la movida” que monta con su paso.

Conocí a una chiquilla menuda, aparentemente muy poquita cosa, pero que también provocaba alboroto a su alrededor. Se llamaba Dafne y siempre me ha venido a la memoria cuando he oído hablar o cuando he visto imágenes del astro que lleva su mismo nombre.

Este satélite, el tercero en distancia al planeta, mide menos de 7 kilómetros y, por su tamaño, desde luego que no merecería hablar mucho de él.
Entonces ¿por qué le dedico un artículo del blog?

Por esto:
En una determinada zona los anillos parecen extrañamente removidos. Esto delató la existencia de Dafne antes de ser encontrada.
Creo que entenderás mis razones:
Al moverse entre los anillos, en la llamada división de  Keeler  que, por supuesto, el satélite ha ocasionado, provoca esas ondulaciones en los bordes de ese surco. 

Hay algún otro satélite que también hace algo parecido aunque una escala muy inferior. Pero...
En esta otra foto, con una iluminación del Sol casi en la dirección del plano de de los anillos se ve algo más: el relieve.
Fijándose en las sombras, tanto la de Dafne como sobre todo las de esas líneas sinuosas, se aprecia que las llamativas ondulaciones sobresalen por arriba y por abajo del plano de los anillos formando unos relieves extraños.

Entre las muchísimas sorpresas que hemos descubierto en las cercanías del sexto planeta gracias a Cassini, desde luego para mí ésto es de lo más curioso.  


Existen otros satélites, tanto de Saturno como de Urano, llamados satélites pastores porque de alguna manera pastorean las partículas de los anillos con su atracción gravitatoria manteniendo sus bordes bien definidos, y algunos de ellos también ocupan estrechos huecos en el anillo. 
En alguna ocasión hablaré de ellos y la curiosa mecánica gravitatoria que les convierte en "pastores", pero hoy el protagonista es Dafne porque es especial ya que en los otros casos no se producen esas ondulaciones tan llamativas.

Ello es debido a que la órbita de Dafne no está exactamente en el mismo plano que los anillos, sino ligeramente inclinada. Por eso durante la mayor parte de su órbita (que tarda poco más de 14 horas en completarla) está situado por encima o por debajo del plano de los anillos y periódicamente, cada 7 horas aproximadamente, atraviesa dicho plano.

Cuando está por encima de los anillos, atrae hacia arriba a las partículas, formando una elevación, y el efecto contrario cuando está por debajo.

Todo parece lógico, pero si levanta las partículas a su paso tanto a su izquierda como a su derecha ¿Por qué a un lado del hueco las ondulaciones están solo después de la posición del satélite y al otro están antes?
Es una consecuencia lógica teniendo en cuenta la velocidad con que se mueven en su traslación alrededor se Saturno. Según la distancia a la que se encuentre del planeta, una partícula o un satélite tiene determinado totalmente su periodo (se puede calcular por la tercera ley de Kepler) y por lo tanto su velocidad.

Las partículas del anillo situadas en el borde exterior de la división de Keeler se mueven más despacio que Dafne porque están más lejos del planeta, y por eso la ondulación producida por el satélite (por ejemplo cuando se encuentra éste por encima del plano del anillo) se va retrasando respecto a él. Al cabo de una vuelta de Dafne, volverá a estar nuevamente encima del plano y se encontrará con la zona del anillo anterior a la ondulación y producirá una nueva onda delante de esa. Así van surgiendo sucesivas ondulaciones, cada vez ligeramente adelantadas, aproximadamente cada 14 horas una sinusoide completa con su zona superior e inferior.

Lo contrario ocurre con el borde interior de la división de Keeler, donde las partículas se mueven más rápido que Dafne y las nuevas ondulaciones aparecen detrás de las anteriores, según el sentido de giro alrededor de Saturno.

Si tomamos como referencia la posición del satélite, las partículas del anillo exterior (del borde exterior de la división de Keeler) se van moviendo respecto al satélite en sentido horario visto desde el Norte, y las del anillo interior en sentido contrario. 
La siguiente imagen corresponde a la cara sur de los anillos y por eso el sentido del movimiento es al revés.

Si nos imaginamos que estamos situados en Dafne, veríamos como subimos y bajamos respecto al plano del anillo, mientras las ondulaciones creadas por él anteriormente, a uno y otro lado, se van separando y dejando hueco para que surjan otras nuevas.


Aunque todo se mueve en el mismo sentido, respecto a la posición de Dafne los dos grupos de ondulaciones se van separando y en el espacio que dejan se irán formando otras. La imagen corresponde al momento en que Dafne empieza a salir del plano del anillo hacia el frente de la imagen (cara Sur) y está a punto de originar dos nuevas ondulaciones (una a cada lado de la división de Keeler) en una zona todavía plana.


Así unas ondulaciones se van adelantando y otras retrasando respecto a Dafne y siempre las más recientes y evidentes estarán próximas a la posición del satélite.

Las imágenes más impresionantes y clarificadoras se aprecian cuando el plano de los anillos está casi en la dirección del Sol, porque al llegar la luz casi “de canto” las sombras se proyectan sobre el anillo y se hacen evidentes. Eso ocurre en periodos cada 15 años y teniendo en cuenta el tiempo que Cassini ha estado por ahí, fue solo alrededor de 2009 cuando pudo obtener las mejores fotos de la movida. 

La influencia gravitatoria de Dafne sobre las partículas de los anillos no se reduce a lo que aquí he contado y, como he escrito antes, actúa igual que otros satélites pastores frenando o acelerando dichas partículas y modificando de esta manera sus órbitas. 
Pero hoy me quedo con esta historia que ocurre en un lugar minúsculo de las proximidades del sexto planeta, y podemos hacernos una idea del contexto en estas dos imágenes:

En la foto de la izquierda aparece ese diminuto puntito que es Dafne haciéndose notar apenas por su sombra y por lo que monta a su alrededor, y en la de la derecha una visión más amplia de los anillos y el borde del planeta. Como referencia se ha indicado en esta segunda imagen la situación de las dos líneas oscuras de la anterior: la división de Encke y la de Keeler que en esta segunda foto casi ni se intuye.

Dafne es así: pequeña pero revoltosa.