Curiosidades sobre los astros, propuestas de observaciones sencillas, aspectos cotidianos pero poco conocidos, todo ello con un enfoque didáctico.

viernes, 14 de mayo de 2021

Desfile de estaciones espaciales

La noche del sábado 15 al domingo 16 (de mayo de 2021) será especial en los cielos de la península Ibérica.

Desde gran parte de la misma se verán nada menos que ¡6 pasos! de la Estación Espacial Internacional (ISS), y un bonito paso del módulo Tianhe-1 de la estación china recientemente puesto en órbita, con eclipse incluido.

La ISS

Con un brillo mayor que el de cualquier estrella, será fácilmente reconocible moviéndose majestuosamente en el cielo.

Las circunstancias de esa noche son excepcionales: Desde nuestras latitudes no todas las noches se ve la ISS, pero cuando lo hace suelen verse solo uno o dos pasos separados por poco más de hora y media, bien al principio de la noche o al final de la misma. Aunque puede seguir pasando a esos intervalos durante el resto de la noche, no es visible porque entra en la sombra de la Tierra, no refleja la luz del Sol y no la vemos. 

Sin embargo en esta ocasión desde algunos lugares se verá hasta en 6 ocasiones,  ¡incluso en los pasos cercanos a medianoche!,  lo que es muy poco frecuente. El motivo principal es que no llega a entrar en la sombra de la Tierra ni aún en esos pasos.

Zona desde donde se verán los 6 pasos de la ISS durante la noche del 15 al 16 de mayo. Más adelante detallo las circunstancias de las zonas aledañas.


Horarios de los pasos, desde Bilbao. En otros lugares de la península no son muy diferentes, y pueden obtenerse en https://heavens-above.com/ , de donde he sacado esta tabla y otros gráficos de este post.

Aunque la situación es poco habitual, no es nueva. Ocurrió algo parecido el año pasado el 17 de mayo, pero no en mi ciudad, y expliqué los detalles del tema en un amplio artículo que puedes ver aquí: “La estación espacial en sesión continua” 

Únicamente para aclarar la "extraña" circunstancia de la visibilidad de los pasos cercanos a medianoche, tal como detallé en ese artículo, recojo aquí también un gráfico de la situación que explica esa visibilidad en fechas no demasiado lejanas al solsticio de verano, y cuando además la trayectoria orbital de la ISS está acoplada con la línea día-noche, que son las claves del asunto.

Situación en el solsticio de verano del hemisferio norte con la órbita de la ISS en posición adecuada.

La estación china

Desde hace unos pocos días tenemos una nueva estación espacial cuyos pasos podemos observar: la estación china, de momento con su primer módulo Tianhe-1. Su brillo es muy inferior al de la ISS, pero puede llegar a rondar la magnitud 1 y es perfectamente visible moviéndose en el cielo.

Precisamente fue el cohete que la puso en órbita, el que fue noticia la semana pasada porque, descontrolado, realizó su reentrada en la atmósfera terrestre el pasado domingo después de una gran incertidumbre sobre el lugar en que podría caer.

El paso de la Tianhe-1 es una novedad porque desde que ha sido lanzada el pasado 29 de julio solo se había visto desde aquí de madrugada. Se ha empezado a ver por la tarde el día 13 y 14 pero en la mayoría de los lugares de la península a muy baja altura, y ahora tendremos la oportunidad de ver su paso, probablemente por primera vez desde muchos sitios.

Además el paso de esa noche será especial porque podrá verse su eclipse cuando entre en la sombra de la Tierra, que será más espectacular desde la zona central de la península porque desaparecerá de la vista del observador cuando pase casi por el cenit.

La coincidencia o cercanía del momento del “Punto más alto” y el “Fin de visibilidad” indica que el eclipse se producirá precisamente en los momentos en que alcanza la mayor altura en su trayectoria y el máximo brillo.

Para ilustrar el fenómeno, pongo una imagen de un eclipse de la ISS.

Rastro dejado por la Estación Internacional en una foto de varios segundos de exposición antes de entrar en la sombra de la Tierra y producirse un eclipse. La Tianhe-1 brillará mucho menos, pero incluyo esto aquí para ilustrar el fenómeno, porque evidentemente no tengo ninguna imagen suya.

Pero hay que estar atentos para localizar la estación china porque, como se ha dicho, su brillo es muy inferior al de la ISS, solo cuando alcanza buena altura superior al de las estrellas del carro de la Osa Mayor. Una vez localizada podremos seguir su trayectoria y ver como desaparece como por arte de magia a las 23:25. Aquí pongo un mapa de la trayectoria, para 3 ciudades de muy diferente latitud, elaborado también a partir de https://heavens-above.com/

Aunque las trayectorias por el cielo entre las constelaciones y el punto en que ocurre el eclipse son diferentes según el lugar de observación por la distinta perspectiva, éste se produce simultáneamente visto desde cualquier sitio ya que el hecho de dejar de recibir la luz solar es algo objetivo, lo mismo que ocurre en los eclipses de Luna.

Los próximos días habrá más situaciones similares, pero esta es la primera. ¡Precisamente el día de los 6 pasos de la ISS!

¿Desde dónde se verá?

El eclipse de la estación china podrá observarse desde toda la península y Baleares. En Canarias no, pero allí ayer día 13 se vieron 3 pasos y en el último hubo eclipse, aunque a baja altura y el brillo fue pequeño.

Respecto a la ISS, la habitual referencia de Heavens Above (auténtica autoridad en el tema), considera visibles los pasos en que adquiere una altura de más de 10º sobre el horizonte y el Sol está por debajo de los 6º bajo el mismo (límite del crepúsculo civil) para que el cielo esté lo suficientemente oscuro como para distinguir a la Estación Espacial. 

Según esos criterios serán visibles los 6 pasos anunciados, aproximadamente desde la zona remarcada en este mapa cuya parte central ya he puesto antes, y ahora explico:


- A la izquierda de la línea verde no se verá el primero de los 6 pasos porque el Sol se puso poco antes y aún no ha oscurecido.

- A la derecha de línea roja no se verá el último porque ocurrirá próximo en amanecer y el cielo está ya brillante.

- Por debajo de la línea azul no será visible el tercer paso, porque está cercano a la medianoche, cuando la ISS está sobrevolando una zona de latitud muy alta, y desde aquí alcanza una altura inferior a 10º sobre el horizonte norte.

- Por debajo de la línea negra no será visible el cuarto paso, por motivo análogo al anterior.

- ¿Por qué cuanto más al norte la zona de visibilidad de los 6 pasos es más estrecha? Porque en estas fechas ya relativamente cercanas al solsticio de verano, la noche es breve, más corta cuanto más al norte, y no hay tiempo de recoger tantos pasos.

Por ello nunca podrán verse tantos pasos por encima de la latitud 45º en estas fechas. Ni tampoco en otras desde ningún lugar, tal como se explicó en el artículo mencionado antes, por el estrecho margen de fechas en que esto se puede producir. 

Desde donde yo vivo, en la latitud 43º 20´ el que se vean 6 pasos es algo muy poco frecuente. 

Solo queda esperar que tengamos cielos sin demasiadas nubes (aunque haya algunas podría verse porque las trayectorias son muy amplias), y aunque no intentemos ver todos los pasos, ¡quién sabe! Que ahora una vez terminado el toque de queda, puede ser una buena excusa para pasar la noche fuera de casa, quizás volviendo a retomar nuestras observaciones del cielo, por supuesto sin aglomeraciones y, si no estamos solos, con la mascarilla puesta.




Desde otros lugares de la Tierra

Por supuesto, la zona de la península Ibérica no es la única en que pueden verse esa noche los 6 pasos de la ISS. Como cada órbita dura una hora y 33 minutos (*) y en ese tiempo la Tierra ha girado casi 23.5º, moviéndonos hacia el este o al oeste en intervalos de esa amplitud la situación es similar.

No exactamente igual, y todas las zonas no tienen la misma extensión porque con el paso de las horas se va desajustando la línea día-noche respeto a la órbita, que es el motivo por el que ocurre esta curiosa circunstancia, y que se explicó en el mencionado artículo del pasado año.

Incluso en la noche siguiente, del domingo 16 al lunes 17, volverá a ocurrir en otras zonas, aunque ya de tamaño más reducido. Por lo que respecta a Europa, se recoge en el siguiente mapa.

Zonas desde las que pueden verse 6 pasos de la ISS


No es posible ver 6 pasos fuera de la franja comprendida entre los 38º y 45º de latitud, y nunca se verán más de 6 desde ningún lugar.

- Tal como se calculó en el mencionado artículo del año pasado, desde latitudes inferiores a 38º nunca se verán los pasos cercanos a la medianoche porque la ISS no alcanzará una altura suficiente sobre el horizonte.

- Como también se indicó, el hecho de poder ver tantos pasos seguidos, todos los que dé tiempo durante toda la noche incluidos los cercanos a la medianoche, solo se puede producir con una diferencia máxima de 40 días respecto al del solsticio de verano (cuando la declinación solar es superior a 18.15º),  y si la órbita de la ISS está en una determinada orientación, lo que ocurre anualmente una vez en cada hemisferio (o excepcionalmente dos, como este y el pasado año).

En esas fechas en la latitud 45º la noche dura 8 horas y 3 minutos como mucho, considerando el periodo en que el Sol está por debajo de los 6º respecto al horizonte para que el cielo esté lo suficientemente oscuro, y en ese tiempo por muy poco ya no pueden verse 6 pasos porque se necesitarían 8h 5m. (*)

(*) Aunque la ISS tarda 1 hora y 33 minutos en completar una órbita, de un paso a otro visible en estas latitudes transcurren 4 minutos más porque no está en el mismo lugar de su órbita.

Para latitudes mayores de 45º, por lo tanto, nunca se verán tantos y los 6 pasos en una sola noche solo se pueden ver en las dos franjas que recoge este mapa:


Pero este límite de los 45º queda determinado en las fechas más favorables, cuando casualmente el acople adecuado de las órbitas ocurra el 13 de mayo o el 31 de julio. Si ocurriese el día del solsticio, no se verían 6 pasos desde ningún lugar ya que la latitud en que la noche dura las 8 horas y 5 minutos necesarios, casi coincide con el límite inferior de la franja, cerca de los 38º. 

- Nunca se verán más de 6 pasos porque para ver 7  se necesitarían 9h 42m, y en la latitud y fecha más favorable (38º y 13-5) la duración de la noche desde el límite del crepúsculo civil, con el Sol a -6º, es de 8h 49m. 

miércoles, 5 de mayo de 2021

Mercurio vuelve a citarse con Venus al atardecer

Parece que fue ayer cuando Venus se despidió de los cielos vespertinos, pero ya ha pasado casi un año y le toca volver. Si en aquella ocasión Mercurio estuvo allí para despedirlo y tomarle un breve relevo como relaté en "Mercurio releva a Venus" en esta ocasión también ha estado para saludarle en su vuelta.

Y cuando ya a final de mes le deje todo el escenario al segundo planeta, la nueva despedida será muy efusiva en una conjunción cerrada.

Después de muchos días nublados en Bilbao, el domingo día 2 despejó totalmente al atardecer y pude apreciar a ambos planetas a simple vista cuando estaban a punto de ocultarse en el horizonte. En el momento de obtener esta imagen solo Venus (a poco menos de 5º de altura) se veía sin ayuda óptica, pero luego también se distinguió muy bien a Mercurio. 
Como aparecen muy débiles en la imagen, los he ampliado para poder apreciarlos 

Al día siguiente ocurrió algo similar, el cielo estuvo también muy limpio, y obtuve estas dos imágenes, separadas por 30  minutos, sobre el mismo horizonte.

A pesar de estar todavía el cielo muy luminoso, el gran brillo del segundo planeta lo hacía perfectamente visible incluso cerca del horizonte.

Mercurio, siempre mucho más débil, también pudo verse sin dificultad, por la  misma zona, cuando media hora más tarde estaba a punto de ponerse y el cielo estaba más oscuro.

La atmósfera estaba tan limpia que pudo verse al esquivo primer planeta jugando al escondite entre los árboles del horizonte instantes antes de ponerse, como se aprecia en esta animación:



Aunque la máxima elongación de Mercurio se producirá el día 16, y es cuando teóricamente (según lo que siempre se dice) está en mejor disposición para observarlo porque su separación angular con el Sol es máxima, se ha dejado ver ¡dos semanas antes! porque ahora tiene mucho más brillo, teóricamente el día 2 con magnitud -1 frente a 0.3 el 16, aunque debido a la baja altura y la reducción por la atmósfera se quedan respectivamente en 1 y 2 (cuanto menor es el número de la magnitud, el brillo es mayor).

Aunque el brillo del primer planeta va disminuyendo de día en día, su posición mejora, cada vez puede verse durante más tiempo tras la puesta de Sol y eso hace que estos próximos días sean muy adecuados para verle, cerca de su colega Venus.

Todo esto desde mi ciudad, a poco más de 43º de latitud norte. Desde el hemisferio sur, aunque habitualmente las presentaciones de Mercurio son mucho más favorables, en este caso al ser allí otoño será más difícil (Ver "El planeta sureño se asoma por el norte"), pero puede intentarse la observación ayudándose de unos prismáticos para la localización de los planetas.

Pero lo mejor está por llegar:

- El 13 de mayo tendremos una preciosa estampa con la Luna creciente muy fina de solo 2 días junto a Mercurio.

A partir de la Luna podría localizarse Mercurio con prismáticos y luego intentar verlo a simple vista cuando vaya oscureciendo.

Montaje de la situación del día 13, para latitudes medias del hemisferio norte, media hora después de la puesta de sol. 
-----
Edito el post el día 14 para incluir una magnífica imagen obtenida ayer por Sebastián Cardenete desde Málaga. En Bilbao las nubes impidieron verlo, pero esta foto muestra toda la belleza de la situación:


-------

- El día 28 de mayo se producirá el encuentro cercano entre los dos planetas, como he anunciado al principio: Estarán separados por solo medio grado, el tamaño angular de la Luna, y podrán verse simultáneamente en el telescopio con un ocular de pocos aumentos.

En realidad ya han tenido otro encuentro furtivo hace poco, el 24 de abril, pero lo han hecho con mucho recato: no se acercaron tanto (a casi el triple de distancia que el 28 de mayo) y estuvieron protegidos de miradas indiscretas por la luminosidad del cielo crepuscular poniéndose solo media hora después de la puesta de Sol. Luego se han ido separando, apareciendo ambos cada vez más altos  sobre el horizonte tras la puesta de Sol pero Mercurio ascendiendo mucho más rápido de día en día hasta el 16. Luego,  en el retroceso tras su mejor actuación vespertina de este año volverá a saludar a Venus y le abandonará.

El día de la conjunción el brillo de Mercurio será ya muy débil y quizás tras localizar sin problemas a Venus haya que mirar justo a su lado con unos prismáticos para verlo.

Posiciones de Mercurio y Venus sobre el horizonte en una latitud de 43º N, 30 minutos después de la puesta de sol. Desde otras latitudes de la península Ibérica estarán ligeramente más altos.
He elegido ese momento, para poder incluir las posiciones del encuentro del 24 de abril, pero en realidad habrá que esperar casi otra media hora más para que oscurezca el cielo y puedan verse los dos planetas, unos 5º más bajos que en este gráfico.

Si vives en el hemisferio sur las condiciones para ver a Mercurio ahora son peores, pero en septiembre serán inmejorables. Desde el hemisferio norte es posible que no lo hayas visto nunca y en este mes de mayo con la referencia de Venus, mucho más brillante, tienes una magnífica oportunidad para hacerlo los atardeceres en que el horizonte Oeste-Noroeste esté despejado. 


viernes, 30 de abril de 2021

Mareas vivas y mareas muertas - La influencia de la Luna (3)

Todas las mareas no son iguales, y en este fenómeno se pueden dar unas grandes diferencias en unos pocos días. Mareas vivas, donde las diferencias de altura entre la pleamar y la bajamar es muy grande son seguidas por otras, solo una semana después, en las que la variación es muchísimo menor. En este tercer capítulo de la serie que comenzaba en “De nuevo en marcha“, recojo precisamente los factores que influyen en la amplitud de la marea.

Aunque hay algo más, fundamentalmente son 4 factores. Por orden de importancia:

1-La fase lunar, 2- La distancia Tierra-Luna, 3- La proximidad de la fecha al equinoccio, 4- Proximidad de la Luna a los nodos. 

Quizás este artículo sea demasiado técnico en algunos momentos, pero te sugiero que lo leas completo aunque sea por encima, y puedes quedarte solo con lo fundamental.

1- La fase lunar

Este es sin duda el factor más decisivo, de tal manera que las mareas vivas siempre se dan en las fechas próximas a las fases llena y nueva, y las de menor amplitud en los cuartos.

Esto es lógico ya que en las fases citadas los efectos del Sol y de la Luna se suman, al estar ambos astros en línea con la Tierra.

Tanto este gráfico como los siguientes son solo esquemáticos, indican el efecto que se señala, pero las proporciones del mismo están muy exageradas.

Quizás te extrañe alguna situación recogida en el gráfico, en relación con las dos pleamares en lugares opuestos de la Tierra. Lo expliqué en el anterior capítulo sobre este tema: "Dos pleamares al día

Habitualmente las mareas más extremas no se dan exactamente en las fechas de plenilunio y novilunio, sino con un cierto retraso de uno o dos días, de manera similar a lo que ocurre con la hora de culminación y la pleamar, debido a la inercia y la configuración de la costa, por lo que en cada lugar ese retraso es diferente, no siendo siempre el mismo en un determinado lugar porque depende de la proximidad de los otros factores.

Pleamares y bajamares diurnas en la ría de Bilbao los días 30 de marzo y 6 de abril. Una de las mareas más extremas del año, dos días después de la luna llena cercana al equinoccio (factor 3), y coincidiendo con el perigeo (factor 2) seguida una semana después por las mareas muertas un día después del cuarto menguante.

Recojo también la gráfica de estas dos mareas diurnas, tomadas de https://tablademareas.com/


Como en una semana la Luna pasa de una fase a otra (por ejemplo de llena a cuarto menguante), las mayores variaciones se producen en solo 7 días. Pero hay otras diferencias, mucho menos importantes y de periodos mucho más largos, que cuando coinciden con la fase adecuada dan lugar a mareas más extremas, como las de la anterior animación.

 

2- La distancia de la Luna.

Debido a la excentricidad de la órbita lunar, la Tierra no está en el centro de la misma y las distancias entre los dos astros varían entre 357000 en el perigeo (punto más próximo) y 406000 km en el apogeo (el más lejano), aunque estos números solo son aproximados porque la forma de la órbita lunar va cambiando ligeramente. 

Lógicamente cuando la Luna está más cerca, la marea será más viva.

Aunque el tamaño de los astros y la amplitud de la marea no están a escala, sí lo están las distancias entre la Tierra y la Luna, aproximadamente en una proporción 7/8.

Lo mismo que ocurre con la órbita terrestre (ver “¿Tienes algo tan redondo como la órbita de la Tierra?") las diferencias en las distancias no se deben a la forma de la órbita, que aunque ligeramente elíptica es casi un círculo perfecto, sino a que la Tierra no está situada en el centro geométrico de la misma, aunque esto sea una consecuencia de aquello.

Órbita de la Luna. El tamaño de la Tierra está exagerado pero todas las distancias y parámetros orbitales están a escala, y se aprecia que la órbita es casi circular.

El efecto de la posición de la Luna en el perigeo sobre la intensidad de la marea es de casi un 15%  superior a la situación media, como puede calcularse con la fórmula de la gravitación universal, y por tanto este segundo factor es mucho menor que el primero (fase llena o nueva), que tal como se recogió en el anterior capítulo era de casi el 50%  al sumar el efecto del Sol al de la Luna.  

Las mareas serán mucho más extremas si los factores 1 y 2 son favorables simultáneamnete, lo que ocurre en las llamadas “superlunas” (fase llena y en el perigeo), que últimamente tanto se publicitan, y también cuando el perigeo coincide con la luna nueva. Además los perigeos más próximos se producen en esos momentos de coincidencia con el plenilunio o novilunio (ya se ha dicho que no todos son igual de cercanos, y varían hasta en un 4%). Precisamente ha ocurrido el pasado martes (27-4-2021), y también ocurrirá el próximo 26 de mayo, pero aunque en esa ocasión la Luna estará ligerísimamente más cerca, y también ser favorable el factor 4 (Luna en el nodo), la marea será menos intensa porque el factor 3 (proximidad al equinoccio) es menor:

En la superluna de mayo las mareas no serán tan intensas como en la de abril. Gráficos tomados también de https://tablademareas.com/

Como el periodo del paso de la Luna dos veces consecutivas por su perigeo es inferior a la duración del ciclo de fases, no es fácil determinar los momentos en que nuestro satélite está en las situaciones más favorables o desfavorables sin recurrir a tablas o efemérides. Se van desplazando respecto a las fases, y si se quieren tomar referencias de un año a otro, la situación más favorable en que coincide la luna llena (o nueva) con el perigeo, cada año ocurre 41 días (en fecha) después que el anterior.

En mucha menor medida también influiría la distancia de la Tierra al Sol. Este dato sí es fácil de recordar, ya que el paso de la Tierra por el perihelio de su órbita, y por tanto la menor distancia Tierra-Sol, se produce siempre los primeros días del año, pero no es significativo porque proporcionalmente las diferencias son mucho menores (la órbita terrestre es aún menos excéntrica que la de la Luna) y la influencia del Sol es menor que la de nuestro satélite.

3- Proximidad al equinoccio

En los equinoccios el Sol está en el plano ecuatorial, y la Luna, que no se separa angularmente del astro rey más de 5º, estará también cerca de ese plano.

Debido a la rotación de la Tierra, la ola de marea se desplaza de Este a Oeste y por ello el efecto de la atracción gravitatoria será mayor en los equinoccios porque “tira” en el sentido del movimiento.

En una situación teórica sin continentes, en los equinoccios el abultamiento máximo de la marea se produce en el ecuador, con lo que se desplaza de manera paralela a la rotación de la Tierra y es más eficiente que en otras fechas donde ese abultamiento va cambiando de hemisferio de una pleamar a la siguiente.

Por poner un símil, es como si quisiéramos mover un vagón situado en una vía tirando de una cuerda. Si nos situamos en la vía delante de él será más eficiente que si estamos fuera de la vía y tiramos un poco en diagonal respecto al sentido del movimiento.

Es curioso que este efecto cuantitativamente es similar o incluso ligeramente inferior al anterior (2), y sin embargo el “saber popular” suele referirse a las mareas vivas equinocciales como las más extremas.

Puede ser lógico porque todo el mundo sabe cuando son los equinoccios, tenemos la referencia memorizada, y dos veces todos los años solemos comprobar el efecto. Pero normalmente no sabemos cuando está la Luna en el perigeo, y aunque también entonces haya mareas vivas se nos pasa más inadvertido y en este caso no funciona el "sesgo de confirmación". 

Aunque con la moda, que tantas veces he criticado, de anunciar las "superlunas" quizás algún día además de las tonterías habituales se cite la relación con las mareas vivas (que es un aspecto mucho más observable y destacado que el tamaño aparente de nuestro satélite), tengamos una nueva referencia, y yo deba rectificar mis críticas. En cualquier caso, esto solo nos proporcionaría la mitad de las situaciones favorables, a no ser que se repita el tremendo error que se difundió hace 5 años de aquella superluna que iba a brillar un montón, a pesar de que era luna nueva.

Como ejemplo de esto, las mareas equinocciales con luna llena el pasado mes de marzo en Bilbao fueron muy amplias, como se aprecia en la animación que he puesto antes, y se comparan con las de abril en este gráfico:

La luna llena de marzo, aunque no coincidió con el perigeo (como sí lo hizo la de abril) provocó una amplitud de marea ligeramente mayor por estar más cercana al equinoccio, aunque esa máxima amplitud se retrasó 2 días, y se dio precisamente en la fecha del perigeo.


4- Luna cerca de los nodos.

Los 5 grados de separación angular máxima entre la Luna y el Sol que se han citado antes se reducen a cero cuando nuestro satélite está en los nodos (puntos de corte de la órbita lunar con el plano orbital terrestre). Entonces ambos astros tirarían exactamente en la  misma dirección y lógicamente sería más eficiente.


Todos los meses la Luna pasa una vez por cada uno de los dos nodos, pero coincide con la luna llena o nueva (factor principal), precisamente en las fechas de los eclipses. Por ello cabría pensar que los días en que haya eclipse las mareas serían más vivas, pero este último factor es el que menos influye de los 4, y todo estará condicionado a las situaciones de los factores 2 y 3. Como ejemplo, el próximo 26 de mayo habrá un eclipse de Luna con nuestro satélite en el perigeo, pero tal como reflejan los datos recogidos antes, las mareas serán menos vivas que en abril y en marzo, porque está lejos del equinoccio (factor 3)

Pero las cuatro circunstancias precisamente fueron favorables el 28-9-2015. El día que muchos medios anunciaron como el de “la superluna de sangre” la Luna estuvo en el perigeo y se produjo un eclipse lunar, y por tanto luna llena en el nodo. No fue exactamente el equinoccio, pero casi, a solo 5 días, y efectivamente, la amplitud de las mareas fue excepcional.

Las mareas en Bilbao casi llegaron a los máximos posibles. Habrían llegado si todas esas circunstancias se hubieran producido el día 23, cuando comenzó el otoño.

Pero parece que ese día nadie habló de las mareas.

La intensidad de los efectos 3 y 4 varían según la latitud y otros factores, por lo que es problemático cuantificarlas en general. Concretamente las mareas equinocciales en determinados lugares pueden ser tanto o más extremas que aquellas en que la Luna esté en el perigeo en otras fechas, y el factor 4 es claramente inferior a los demás. 
------------------

Existen también otros factores en que las circunstancias locales influyen en la amplitud de las mareas:

5- Pleamares desiguales en fechas cercanas al solsticio.

Teóricamente en un momento dado la pleamar debería alcanzar su valor más alto en el lugar de la Tierra que estuviera la Luna en su cénit o, debido al retraso por la inercia y la configuración de la costa, en un lugar donde hubiera estado horas antes. Pero también en la zona opuesta de la Tierra, por la doble pleamar diaria simétrica, como se explicó en el capítulo anterior ("Dos pleamares al día")

Como se ilustra en el siguiente gráfico, en latitudes medias, fuera de las zonas intertropicales pero no demasiado lejos, la mayor altura del Sol cerca del solsticio de verano provocaría pleamares diurnas altas con luna nueva (1) que también estaría en la misma dirección, pero la pleamar nocturna (2) (simétrica a la 5 debida a la posición de la Luna que en el otro hemisferio está baja a mediodía) sería mucho menor. En esas mismas fechas la luna llena alcanza una altura mínima y la pleamar nocturna (4) en su dirección será leve, pero la diurna diurna (3) simétrica a la posición de la Luna en la parte opuesta sería más alta.

En fechas próximas al solsticio de invierno, las correspondiente pleamares diurnas (5 y 8) no serían notables, pero sí lo serían las nocturnas (6 y 7). Aunque el gráfico solo recoge una estación en cada hemisferio, los resultados son iguales en ambos porque las estaciones ocurren en fechas opuestas.

 

Tanto en la luna nueva como llena, la pleamar diurna en las proximidades del solsticio de verano es más alta que la nocturna, y al contrario ocurre en el solsticio de invierno.

Las mareas equinocciales (factor 3) siempre serán más vivas que las del solsticio, pero en las lunas llenas y nuevas cercanas a los solsticios también una de las mareas diarias será destacada según el hemisferio y dependiendo de la latitud, e incluso parece que el "saber popular" ha recogido estas mareas, que en una misma fecha tienen amplitud diferente.

6- Presión atmosférica.

Cuando la presión atmosférica es superior a la media, este "peso del aire" hace que el agua suba en la pleamar menos de lo que debiera, y lógicamente ocurrirá lo contrario cuando hay baja presión. Evidentemente esto nunca se puede prever con mucha antelación y no se incluye este factor en los cálculos para elaborar las tablas de mareas.

Con esta configuración de isobaras, en la costa occidental de la península Ibérica las pleamares serían menos altas de lo previsto, al contrario que en la costa suroccidental de Francia o en las costas mediterráneas.

7- Configuración de la costa

Como se ha dicho en los anteriores artículos, este aspecto tan desigual y con un efecto tan difícil de cuantificar teóricamente tiene una importancia fundamental en el tema y debido a él pueden encontrarse ejemplos que aparentemente maticen en gran medida todo lo dicho.

Buena excusa para cubrirme y aunque en mi ciudad parece que todo funciona según lo dicho, con las correcciones debidas al "establecimiento del puerto", si encuentras algún ejemplo que contradiga alguna de las afirmaciones, ya sabes por qué puede ser.



Mareas sólidas

Para acabar con el tema de las mareas, y aunque se salga del título de este post, quiero mencionar el tema de las mareas sólidas.

No solo el nivel del mar sube y baja con las mareas, sino que también lo hace la corteza terrestre. No la percibimos porque no tenemos una referencia para comparar, como ocurre con el agua del mar junto a la costa, y además la diferencia es de solo unos centímetros. 

Esta circunstancia que aparentemente no debería tener repercusiones importantes, sí las tuvo durante el proceso de calibrado del acelerador de partículas del CERN en Suiza, en el experimento LEP a principios de los años 90.

Parece ser que durante la calibración del enorme acelerador surgían problemas inexplicables según las cuales parecía cambiar la duración de la vida media de algunas partículas. Hasta que, según se cuenta, alguien se apercibió que esas variaciones estaban relacionadas con la fase lunar. Las mareas sólidas producidas por la Luna modificaban ligeramente la longitud del enorme acelerador dando lugar a resultados erróneos. 

Todo se solucionó ajustando los resultados experimentales con una tabla de mareas.

Trazado del enorme acelerador del CERN, su interior, y una gráfica que recoge los datos experimentales de descalibración y su ajuste con la predicción de las mareas terrestres. 

También hay mareas en la atmósfera terrestre y había mareas sólidas en la Luna, antes de que se quedara mostrándonos siempre la misma cara. Siendo ésta circunstancia la consecuencia más evidente del efecto de las mareas, que aunque son un hecho terrenal, su origen y este efecto están en los astros.

Con este post acaba la serie dedicada a las mareas, aunque CONTINUARÁ en lo relativo a otras supuestas influencias de nuestro satélite. Mucho menos técnicas y mucho más jugosas.

miércoles, 21 de abril de 2021

Una lluvia de estrellas muy especial, ... o dos.

Mañana 22 de abril se produce el máximo de las "Líridas" y ya se está anunciando en muchos lugares. Quizás sea porque es la primera lluvia apreciable desde hace 3 meses, pero ya expresé el año pasado mi opinión de que no merecían la pena “Líridas no, …“ .

Si solo tienes curiosidad por ver estrellas fugaces y pedir algún deseo, lo más probable es que al no poder acceder a lugares ideales para su observación, y este año con una luna casi llena, pasarás al menos un cuarto de hora sin ver ninguna Lírida, te cansarás y te volverás a casa defraudado. Mejor espera al 12 de agosto y verás las Perseidas, en un número casi 10 veces mayor.

Pero las protagonistas de este artículo son otras estrellas fugaces, concretamente las Pi-Púpidas, que casualmente tienen el máximo al día siguiente, el viernes 23. Aunque se esperan aún menos, si ya has visto alguna vez otras lluvias, quieres sorprenderte con algo “diferente” y vives en el hemisferio sur, puede merecer la pena tumbarte y esperar pacientemente hasta ver una luz que se enciende en el cielo, moviéndose lenta y majestuosamente durante unos segundos antes de desaparecer.

Aunque según por donde incidan en la atmósfera también a veces producen trazos largos, en otras ocasiones su pequeño recorrido la hace más especial porque parece un fogonazo que permanece encendido en el cielo unos segundos casi sin moverse.


Tengo que escribir sobre ellas porque prometí que lo haría, y se lo dedicaría a mis lectores del hemisferio austral, con ocasión de otra lluvia similar hace 6 meses que era favorable para el norte.

Desde la latitud 35º Sur, una hora después de la puesta de Sol  la posición del radiante de donde parecen surgir las trayectorias, muy alto en el cielo al principio de la noche, pero siempre bajo el horizonte en latitudes de la Península Ibérica, hace que esta sea una lluvia casi exclusiva para el hemisferio sur. Imagen de Stellarium, ligeramente modificada.

Pero no te preocupes si, como yo, vives en el norte, porque todo lo que ahora leas te servirá por ser casi idéntico a lo que podrás ver a principio de octubre con las Dracónidas, a las que me refería en el párrafo anterior. Algo escribí sobre estas en “Efemérides para octubre” 

Observé las Dracónidas los días 7 y 8 de octubre de este pasado año, cuando una temperatura excepcionalmente buena me permitió pasar horas tumbado en una hamaca y mirando el cielo. Vi muy pocas, pero mereció la pena porque fue la primera vez que pude observar algo parecido.

Ambas lluvias tienen varias características claras que las diferencian de las demás: Sus estrellas fugaces presentan una baja velocidad, se ven preferentemente al principio de la noche y el número es muy variable con posibles picos de mayor actividad cada 6 años, aunque no siempre. Como son temas algo técnicos, los explico en el primer anexo.

Cada lluvia de estrellas está asociada a un cometa (en ocasiones a un asteroide originado por un cometa extinto), las partículas que las provocan a las que se les llama meteoroides (similares a granos de arena que se volatilizan al entrar en la atmósfera) se desprendieron de esos cometas y siguen aproximadamente la órbita de los mismos, pero un poco separadas o dispersas en torno a ella.

Los cometas origen de las Pi Púpidas y las Dracónidas, llamados 26P/Grigg-Skellerup y 21P/Giacobini-Zinner respectivamente, tienen unas órbitas muy similares pero opuestas, y de ahí vienen las características de las lluvias de meteoros que originan. Es un tema enormemente curioso, que yo descubrí de manera casual, pero como es bastante técnico lo incluyo en el anexo final.



1- Su baja velocidad.

Es habitual que en estas observaciones de estrellas fugaces alguien grite ¡Otra ahí!, pero no da tiempo a girar la cabeza, y solo quien estaba mirando en la misma dirección lo confirma. Con estas sí dará tiempo.

¿Por qué esa lentitud? Porque al contrario que en la mayoría de las otras lluvias en que la Tierra en su camino alrededor del Sol choca frontalmente con el meteoroide (la partícula que se desprendió del cometa quizás hace mucho tiempo y produce el meteoro) que viaja en dirección diferente a la de nuestro planeta, a veces incluso contraria y por ello la velocidad relativa es grande, en este caso es un choque por alcance o impacto lateral de algo que viaja casi paralelo a la Tierra y así la velocidad de impacto es mucho menor, se les ve moverse despacio y tardan más en vaporizarse en la atmósfera.

Si habitualmente se utiliza el símil de los mosquitos que se estampan violentamente en el parabrisas de un coche que representaría nuestro planeta, estos serían como supermosquitos poco más veloces que nuestro vehículo, que nos alcanzarían y casi se posarían en el cristal trasero.

En este gráfico se representa la situación, comparándola con la de la lluvia más famosa, la de las Perseidas, que impactan a una velocidad relativa mucho mayor

Mientras las Perseidas (representadas en rojo) impactan en dirección casi contraria y desde "arriba" (desde el norte), la Pi Púpidas vienen casi en la misma dirección que la Tierra, un poco desde el sur, siendo esta circunstancia la que hace que se vean preferentemente desde uno u otro hemisferio.

Como se explica luego, la órbita de su cometa progenitor cambió en 1999 y por eso se ha representado tanto la actual como la anterior, ya que meteoroides de pasos anteriores a esa fecha pueden seguir impactando con la atmósfera terrestre.

2- Al principio de la noche.

Tal como he explicado más de una vez, en la mayoría de las lluvias de promedio se ven muchos más meteoroides de madrugada, aunque esto pueda estar enmascarado por la hora en que la Tierra atraviesa la zona de mayor densidad de meteoroides (la hora del máximo) que cada año es diferente: Nuestro planeta en su movimiento de traslación va atrapando “por su zona delantera” a los diferentes meteoroides, y esa zona corresponde a los lugares donde finaliza la noche.

Pero en este caso la hora es mucho menos intempestiva. El motivo es el mismo que antes: impactan la atmósfera terrestre casi por detrás según la dirección de la traslación alrededor del Sol (aunque un poco desde el sur), y ahí están los lugares de la Tierra en que acaba de empezar la noche.

Dirección con la que llegan los meteoroides de la Perseidas y la Pi Púpidas

En las zonas 1 y 4 es el principio de la noche, mientras en 3 y 6 es el final. Las Perseidas caerán preferentemente en la zona 3 (hemisferio norte al final de la noche). La mayoría de las lluvias en las zonas 3 o 6, pero las Pi Púpidas lo hacen sobre todo en la 4 (hemisferio Sur principio de la noche)


3- Su número es bastante variable de unos años a otros.

Aunque normalmente no surjan más de 10 meteros cada hora, la tasa de la Pi Púpidas es bastante variable y en ocasiones superan los 100.

Eso es debido a las órbitas de los cometas que las generan, que pasan cada 5 o 6 años cerca de la Tierra dejando meteoros frescos, que al estar sin diseminar llegan a impactar en mayor número con la atmósfera de nuestro planeta. En esos años es de esperar una mayor actividad, aunque al no ser muy densas las nubes meteóricas y no coincidir necesariamente el paso por el nodo con la posición de la Tierra en las fechas adecuadas, no siempre ocurre así.

Un caso similar muy claro y conocido es el de las Leónidas, que se pone siempre de ejemplo: Teniendo habitualmente una tasa (THZ) de solo 15 a la hora, cada 33 años se vuelven espectaculares, aumentando a varios miles, y produciéndose en alguna ocasión situaciones excepcionales (5000 en 1999, 100000 en 1966 o ¡240000 en 1833!)    

Imagen que representa la extraordinaria lluvia de Leónidas en 1833

En el caso de las Pi Púpidas se produce una circunstancia muy especial debido a la frecuente variación de la órbita del cometa (la última vez en 1999), que junto con otras cuestiones técnicas explico en el anexo final.

En cualquier caso tanto éstas como las Dracónidas y otras similares aún menos activas que citaré luego, habitualmente dan un pequeño número de meteoros porque los cortos periodos de sus cometas progenitores han hecho que se desgasten y hayan perdido gran parte de sus elementos volátiles en sus frecuentes pasos por el perihelio. Son destacables por la calidad y no por la cantidad.



 La órbita del cometa progenitor

El cometa 26P tiene unas características muy especiales (*) en las que se encuentran las claves de la lluvia de las Pi Púpidas que ocasiona:

(*) O eso pensaba yo, y esta historia me ha llevado a descubrir que existe un numeroso grupo de cometas, de los que no se suele hablar porque no son en absoluto llamativos, con órbitas similares a 26P.

La mayoría de los cometas más conocidos, los que dan espectáculo, pasan mucho más tiempo en uno de los hemisferios eclípticos, precisamente en el que tienen el afelio, y lógicamente se muestran más activos y espectaculares en el breve intervalo en que están en el contrario (cerca del perihelio), como se explicó en “Posiciones orbitales de los cometas” y se ilustra en este gráfico:


- Sin embargo el 26P tiene prácticamente media órbita por encima de la eclíptica y media por debajo, y esto es debido a que sus dos nodos están muy próximos al perihelio y afelio:


- La inclinación orbital (22º) es más bien baja, teniendo en cuenta que las órbitas de estos astros (a diferencia de las de los planetas) están en cualquier plano no necesariamente cercano a la eclíptica, formando ángulos con ella de 0 a 180º (técnicamente de 0º a 360º teniendo en cuenta el sentido del movimiento)

- Pero es también muy curioso el hecho de que uno de los nodos (el nodo descendente y por tanto el afelio) está muy cerca de la Órbita de Júpiter mientras que el nodo ascendente (y el perihelio) está muy cerca de la de la Tierra. Aunque este último actualmente está a 0.12 U.A de la órbita terrestre, ha llegado a estar a solo 0.01 U.A. lo que le colocó como uno de los objetos peligrosos (PHA)

Ello se agrava porque al poder pasar también muy cerca de Júpiter, tal como se ha dicho, el planeta Gigante puede modificar la trayectoria de 26P si cuando el cometa se acerca a su afelio Júpiter está también en esa zona de su órbita, habiendo ocurrido esta circunstancia al menos 4 veces (en 1725, 1922, 1977 y 1999) Afortunadamente la última lo ha alejado un poco de la órbita terrestre.

Dos cometas emparentados y dos lluvias relacionadas.

Más curioso aún es que el progenitor de la otra lluvia análoga a esta, el 21P de las Dracónidas, presenta prácticamente las mismas características, y todo lo dicho respecto a la posición de los nodos, el perihelio, afelio, y la simetría respecto al plano de la eclíptica se repite aunque en este caso el nodo próximo al afelio no se acerca tanto a la órbita joviana y no le afectará demasiado. El nodo próximo a la órbita terrestre del 21P es el descendente y por ello los meteoros que produce se ven desde el hemisferio norte.

Las aparentemente curiosas analogías en las órbitas de los cometas que producen las lluvias Pi Púpidas y Dracónidas.

La inclinación orbital de 21P es de 32º, que tampoco es muy diferente del otro.

Sus periodos también son relativamente similares: el de 26P es 5.31 años y el de 21P 6.55, aunque ello es consecuencia de lo dicho respecto a la situación de sus perihelios y afelios, ya que sus ejes mayores tienen una longitud parecida (la suma de las distancias al Sol de la Tierra y de Júpiter). Aunque no parecen números demasiado cercanos, sí lo son teniendo en cuenta la enorme diferencia que se da entre estos tipos de astros (*).  Por ejemplo el del Halley es de 75 años y el del  Neowise casi 6000 años, o solo poco más de 3 el del Encke, por citar algunos ejemplos famosos. 

(*) Sin embargo, como acabo de descubrir, existe un gran número de cometas con un periodo cercano a los 6 años, y hay un motivo para ello.

Otra analogía que me sorprendió cuando casualmente descubrí este tema, es que las posiciones de ambas órbitas son casi simétricas, una enfrente de la otra, y por ello producen meteoros en fechas opuestas del año, aunque esto sí es casualidad.

 ¡Aún hay más!

Me dí cuenta de las curiosas coincidencias entre las dos lluvias de meteoros, y luego entre las órbitas de los cometas progenitores, el pasado verano cuando tras ver anunciadas las Dracónidas, como “algo diferente a lo habitual”, seguí buscando lluvias que dieran meteoros lentos.

En un listado no tan completo como el que recojo abajo encontré las Pi Púpidas y las coincidencias me parecieron una tremenda casualidad. Tan enorme, que seguramente debería haber alguna razón para que se produjeran estas circunstancias. Preparé entonces estos detalles y los dejé a la espera de publicación cuando les llegara el turno a las del hemisferio sur.

Pero mientras, he ido buscando en listados más exhaustivos, como éste.

En esta completa lista de lluvias de meteoros he marcado las que tienen velocidades más lentas.
Teniendo en cuenta que la velocidad de la Tierra en su órbita alrededor del Sol es de unos 30 k/s, puede deducirse en cada lluvia si los meteoroides vienen con una componente en el mismo sentido o contrario, aunque al moverse en cualquier dirección en el espacio tridimensional, no es suficiente restar velocidades para deducir la suya.

Mi sorpresa aumentó cuando ví que hay otra lluvia similar: las Boótidas, pero con una actividad muy baja (habitualmente solo 1 o 2 por hora, aunque en 1998 fueron 100) que hace que frecuentemente no se cite, y también su cometa progenitor tiene una órbita similar aunque no se acerca tanto ni a la Tierra ni a Júpiter

Este me rompía la supuesta simetría orbital de los dos primeros, y ahora en otras tablas he encontrado las Tau Herculinas y la Phoenicidas. Todas ellas con una actividad muy baja por lo que no suelen aparecer en la mayoría de las relaciones de lluvias anuales, pero también con las mismas propiedades que las anteriores en cuanto a velocidad muy lenta, visibilidad a principio de la noche, THZ variable y órbitas de los cometas progenitores con casi idénticas y extrañas características.

Efectivamente, tenía que haber una razón para tanta coincidencia: La influencia gravitatoria de Júpiter sobre los cometas que pasen cerca de él cuyas órbitas iniciales son alteradas y muchos se quedan “atrapados” en este tipo de configuraciones.

Gráfico que recoge una serie de órbitas cometarias que tienen el afelio cerca de la órbita de Júpiter (tomado de windows2universe.org y completado con algunas indicaciones). En él se pueden contar 17 órbitas, pero debe haber bastantes más porque aquí solo aparecen 2 de las 5 mencionadas con el perihelio cerca de la órbita terrestre..

Aunque solo produzcan estrellas fugaces aquellos cuyo perihelio (y nodo) está próximo a la órbita terrestre (como he dicho en este gráfico solo se han recogido dos de ellos), parece que existe un gran número de cometas con el afelio cercano a la órbita joviana.

Se trata de los llamados “Cometas de la familia de Júpiter”, o de parte de ellos, de los que habrá que hablar en otra ocasión.