Curiosidades sobre los astros, propuestas de observaciones sencillas, aspectos cotidianos pero poco conocidos, todo ello con un enfoque didáctico.

Mostrando entradas con la etiqueta Mecánica celeste. Mostrar todas las entradas
Mostrando entradas con la etiqueta Mecánica celeste. Mostrar todas las entradas

viernes, 15 de octubre de 2021

La eclíptica

Escribo este post respondiendo a una petición realizada hace unos días en un comentario, y debo dedicárselo especialmente a Juan M-A. 

Por otra parte, tengo que decir que trata un tema bastante técnico, con algunas proyecciones gráficas que podrían resultar difíciles de visualizar o interpretar. Nada que ver con el post anterior, y espero que tampoco con el siguiente, al que puedes esperar si este se hace duro.

Hace un mes fue la máxima elongación de Mercurio” pero prácticamente no pudo verse desde el hemisferio norte porque la eclíptica en otoño a la puesta de sol está muy poco inclinada, casi horizontal”. En más de una ocasión habré escrito frases como ésta en la que no es fácil de comprender la influencia de la situación de la eclíptica. Veamos lo que es realmente:

Aunque en esencia es lo mismo, puede encontrarse la palabra “eclíptica” en dos contextos diferentes, y así puede hablarse de “el plano de la eclíptica” o bien de “la línea de la eclíptica”:

- El primero es el plano que contiene la órbita de la Tierra alrededor del Sol, por ello tanto el Sol como nosotros estamos situados en ese plano, y forma un ángulo de 23.5º (más exactamente 23º 27´) con el plano del ecuador (el plano que contiene el ecuador terrestre), lógicamente el ángulo de inclinación del eje terrestre.


- La línea de la eclíptica sería la proyección del mencionado plano sobre la esfera celeste, tal como lo veríamos desde la Tierra. Un plano visto de perfil se convierte en una línea.

Lógicamente el Sol siempre está en la eclíptica, y así esta línea atraviesa las constelaciones zodiacales, aunque en realidad no solamente recorre las 12 conocidas que se utilizan en los horóscopos, sino también Ofiuco y roza la de la Ballena.

Aunque en realidad nosotros vemos una línea recta proyectada sobre la esfera celeste, al representar cualquier esfera sobre un plano siempre se deforma. Habitualmente se representa el ecuador como una recta y la eclíptica como una línea sinusoidal, tal como aparece en esta imagen, pero también podría hacerse al revés.

También puede visualizarse mediante el llamado “modelo de las dos esferas”: la celeste y la terrestre, donde se aprecia la similitud entre el ecuador y la eclíptica, dos círculos máximos con una inclinación de 23.5º de uno respecto a otro.


En nombre de “eclíptica” se debe a que si la Luna está ahí con fase llena o nueva, se produce un eclipse.

Como las órbitas de los planetas del Sistema Solar están casi en el mismo plano, aproximadamente también éstos se verán cerca de la línea de la eclíptica, con una separación máxima de 8.7º en el caso de Venus, aunque normalmente es mucho menor. Al final del artículo se detallan las circunstancias de cada planeta.

Si la elongación de un planeta (su separación angular con el Sol) es pequeña, será más fácil de ver cuanto más vertical esté la eclíptica en el momento de la puesta de sol o del amanecer, según se encuentre al Oeste o al Este del astro rey, tal como se visualiza más adelante en uno de los gráficos.



Entre los sistemas de coordenadas celestes, además de las más conocidas (ascensión recta y declinación o azimut y altura) también están la longitud y latitud eclíptica, que como se deduce de su nombre son análogas a la longitud y latitud de un punto de la superficie terrestre, siendo las referencias en este caso la línea de la eclíptica y el meridiano que pasa por el punto vernal (corte del ecuador celeste con la eclíptica, donde está el Sol en el equinoccio de primavera del hemisferio norte)


Desde cualquier lugar concreto la línea del ecuador estará fija en el cielo, interceptando el horizonte justo en el Este y el Oeste, y con una altura máxima igual a la colatitud del lugar (90-latitud), mientras que la eclíptica va variando con el paso de las horas y la fecha.

Aquí aparece una simulación correspondiente al hemisferio norte en el equinoccio de primavera, y luego en el anexo se ilustran diferentes situaciones para los dos hemisferios.


Nótese la diferencia en el momento de la salida del Sol, en que está muy horizontal.

O en el momento de la puesta, mucho más vertical. 


En ambos casos pasa por el Este y el Oeste, pero a cualquier otra hora no:

Como se ha dicho, el ecuador siempre permanece fijo.

La última imagen (y su simétrica) correspondería también al momento de salida o puesta de sol en los solsticios .



Para concretar más, en ambos hemisferios y en los dos equinoccios, recojo unos gráficos (algunos publicados ya en este blog hace años), que ilustran la inclinación de la eclíptica cerca del horizonte en momentos próximos a la salida y puesta de Sol que será determinante para la visibilidad de un planeta cuando su elongación sea pequeña.

- En el hemisferio norte tras la puesta de Sol la situación más favorable se da en el equinoccio de primavera:


Aunque el planeta esté en la eclíptica, su trayectoria diaria es paralela al ecuador, y en esta representación se ocultará por el horizonte en los puntos 1 y 3

- En el hemisferio norte antes de la salida del Sol en el equinoccio de otoño es cuando más vertical se encuentra la eclíptica:


- En el hemisferio sur tras la puesta de Sol la situación más favorable se da en el  equinoccio de primavera (ahí en septiembre):
- En el hemisferio sur antes de la salida del Sol en el equinoccio de otoño es cuando más vertical se encuentra la eclíptica

Por todo ello, aunque las direcciones de salida y puesta de Sol en los dos hemisferios son diferentes, coinciden las situaciones en el mismo equinoccio: en ambos casos si queremos observar al anochecer un planeta con elongación Este no muy grande, las mejores fechas serían cerca del equinoccio de primavera. Aunque hay que tener en cuenta que ocurren en fechas opuestas. Y si en una fecha la visibilidad de un planeta con poca elongación es favorable en un hemisferio, en el otro será desfavorable.

- Una representación conjunta, en solsticios y equinoccios, como ejemplo para la puesta de sol en el hemisferio norte. En el Sur la situación es la misma con las inclinaciones en el sentido contrario.


- Proximidad de cada planeta a la eclíptica: Como se ha dicho, siempre vemos los planetas cerca de la eclíptica y la separación angular con la misma depende de la inclinación de su órbita, pero también del lugar de la órbita en que esté y de la distancia a la Tierra. Mientras que el primer factor es fijo, los otros dos varían.

jueves, 30 de septiembre de 2021

Baile sincronizado en Neptuno

Hace unos días fue la oposición de Neptuno, concretamente el 17 de este mes de septiembre.

Pero nadie habló de ello y no se le prestó ninguna atención en los medios como suele hacerse por ejemplo con Marte o Júpiter. Es lógico porque el octavo y último planeta no puede verse a simple vista como los otros, y debido a su gran distancia desde el Sol, su aumento de brillo en la oposición es muy pequeño.

Sin embargo por aquellos lugares ocurren cosas sorprendentes y no quiero dejar pasar más tiempo sin dedicarle un post a Neptuno, o mejor dicho a sus dos satélites más interiores: Náyade y Talasa.

Representaciones de las personalidades mitológicas de Náyade (ninfa de las aguas dulces) y Talasa (diosa del mediterráneo) junto a una imagen del primero de los satélites.

Ambos tienen una forma muy alargada, su tamaño ronda los 100 kilómetros y se mueven más deprisa que la rotación de Neptuno por lo que eso hace que se vayan acercando poco a poco al planeta hasta que en un futuro lejano choquen con él o con sus anillos, como ocurre con Fobos, el mayor de los satélites de Marte.

Pero lo más destacable de la pareja es que mantienen un baile muy especial. Sus órbitas, prácticamente circulares, están separadas por solo 1848 kilómetros, que no es nada en términos astronómicos.

Gráfico a escala donde se aprecia la cercanía entre las órbitas de los dos satélites

Es cierto que aún más cercanas están las órbitas Jano y Epimeteo, satélites de Saturno; y si para evitar un choque cuando se aproximaban aquellos realizaban un baile “a lo agarrado”, casi dándose la mano e intercambiando posiciones, tal como conté en el artículo que les dediqué en su día, estos dos mantienen las distancias llevando a cabo otra danza muy diferente “a lo suelto”.

Lógicamente al tener las órbitas tan cercanas sus periodos orbitales también son similares, y es casi cada 17 vueltas de Talasa cuando es alcanzada por Náyade. Si las órbitas estuvieran en el mismo plano en ese momento del adelantamiento su distancia sería los mencionados 1848 km, demasiado cerca como para que sus órbitas no se desestabilizaran. Pero mientras el plano orbital de Talasa prácticamente coincide con el ecuatorial de Neptuno, el de Náyade está inclinado casi 5º, con lo que en general la distancia entre ambos en esos momentos de encuentro sería mayor.

No está a escala, habiéndose exagerado la inclinación del plano orbital de Náyade, para una mejor comprensión de la situación.

Pero eso no solucionaría el problema porque los lugares de adelantamiento van recorriendo toda la órbita y en principio en algún momento se podrían aproximar al nodo (punto de corte de la órbita de Náyade con el plano orbital de Talasa)  y la distancia entre los dos satélites sería pequeña. 

Sin embargo hay un mecanismo que se ha adecuado exactamente a los movimientos de ambos, que consiste en el desplazamiento de los nodos de tal manera que siempre los adelantamientos se producen a una misma distancia, concretamente a unos 3470 kilómetros y siempre alejados de los nodos. Justo a 45º de ellos.

El resultado de este "baile de evasión" se ilustra con el siguiente vídeo, realizado a partir de las investigaciones del equipo de Marina Brozovic del LPC de California, que descubrieron el tema hace un par de años, y lo califican como “una coreografía nunca antes vista

Está realizado desde el punto de vista de Talasa, y por ello su posición permanece quieta


Se puede ver como aparentemente Neptuno gira al revés (sentido retrógrado) porque tal como se ha dicho el periodo de traslación de Talasa es menor que el periodo de rotación de Neptuno.

Como las velocidades de ambos satélites son similares, desde Talasa se ve moverse a Náyade relativamente despacio, pero subiendo y bajando cada 7 horas porque su órbita está inclinada y en ese tiempo (entre dos subidas, por ejemplo) la completa.

En la animación se aprecian numerosas órbitas de Náyade vistas desde Talasa que incluyen el primer adelantamiento, pero en el gráfico final aparecen 3 veces más para completar las 4 aproximaciones posibles:

Lugares de adelantamiento de Talasa a Náyade. Los puntos de adelantamiento están separados de los nodos (más arriba o más abajo de la posición de Talasa) con lo que la distancia entre los dos satélites será mayor.

La perfecta sincronización entre estos dos satélites es toda una muestra más de las curiosas circunstancias que se producen en los movimientos de los astros del Sistema Solar, pero realmente sorprendente, siendo la primera vez que se encuentra algo similar, y a la que los descubridores han denominado resonancia de cuarto orden.


Los números explican la coreografía.

La distancia de Náyade y Talasa al centro de Neptuno es de 48227 y 50075 kilómetros respectivamente, o dicho de otra forma 23605 y 25453 a la superficie del planeta, y la excentricidad de sus órbitas de solo 0.0003 y 0.0002.

Sus periodos orbitales son de 7.0565 y 7.4756 horas por lo que cada 125.858 horas (algo más de 5 días) Náyade adelanta a Talasa, cuando el primero ha dado 17.836 vueltas y el segundo una menos: 16.836 desde el encuentro anterior.

Como la parte decimal 0.836 es mayor de 0.5 puede considerarse que los puntos de adelantamiento siguen una secuencia retrógrada, de dirección contraria al movimiento de los satélites, de 59.1º: De A a B en el gráfico:

Como es relativamente frecuente en astros de órbitas contiguas, ambos están en resonancia aunque en este caso con números muy elevados, concretamente en relación de 107 a 101, por lo que los adelantamientos se producirán aproximadamente en 6 lugares concretos y equidistantes de sus órbitas (107-101=6), y esto podría producir una situación estable (que no se acercasen a más de 2604 km, en posiciones a 30º del nodo), aunque quizás no fuese suficiente.

Posible situación con una resonancia exacta y simétrica a la línea de los nodos (No es el caso)
En las posiciones de adelantamiento 2, 3, 5 y 6 la distancia sería de 2604 km. En 1 y en 4 sería mayor

Pero como ocurre siempre en estos casos la resonancia no es exacta y en cada ciclo de 6 adelantamientos el lugar se desplaza 0.0145 vueltas, es decir 5.2º, con lo que al cabo de un cierto número de vueltas el adelantamiento se produciría muy cerca de un nodo ya que los puntos de adelantamiento barrerían todo el círculo.

En la parte superior aparecen los lugares de cada 6 adelantamientos que acabarían recorriendo toda la órbita

Pero la circunstancia más extraordinaria es que los nodos se van desplazando en sentido directo a una velocidad de 0.246º/hora o 30.9º por cada periodo de adelantamiento, de manera que todas las aproximaciones se producen cuando Náyade está a 45º de uno de los nodos (en el punto medio entre un nodo y su punto más lejano), y por ello la menor distancia que separa a los dos satélites (la distancia que les separa en los adelantamientos) es siempre de unos 3470 kilómetros.

Además los nodos no se van alternando, sino que el lugar de adelantamiento se sitúa a los mencionados 45º del nodo ascendente dos veces seguidas (por un lado y por el otro) y luego otras dos al descendente.

En el siguiente gráfico se representan en perspectiva dos adelantamientos consecutivos, el movimiento de los nodos y la distancia entre los satélites.


En este otro gráfico, con la imagen proyectada en planta sobre la órbita de Talasa, aparecen 7 posiciones sucesivas  en que se produce el adelantamiento, donde los lugares de los mismos van girando 59.1º de uno a otro en sentido retrógrado, de tal manera que en sucesivos pasos se completaría toda la superficie posible, pero sin embargo el movimiento de los nodos en sentido contrario mantiene fija la estructura de esta danza, con las posiciones de todos los adelantamientos a 90º de un nodo.


Visto desde Talasa la situación 1 es igual que la 5 ya que se vería a Náyade bajando 45º después de pasar por el nodo descendente; la 2 igual que la 6  en que se le vería bajando 45º antes de pasar por el nodo descendente y la 3 igual que la 7 subiendo desde el nodo ascendente. Por ello solo son cuatro las posibles opciones, que se completan con la 4 en que se vería a Náyade subiendo hacia el nodo ascendente. Estos son los 4 pasos principales de este baile tan especial.

Aunque este movimiento nodal de Náyade pueda parecer exagerado, es de solo 1.7º por cada vuelta, muy parecido al de nuestra Luna, que es de 1.6º.

¿Habría sido provocado por la entrometida Talasa? Según los investigadores parece que no.

Parece ser que la situación actual de la pareja es fruto de una serie de circunstancias ocurridas anteriormente. Cuando Neptuno capturó a su gran satélite Tritón todo el sistema de lunas se alborotó, Náyade habría adquirido su movimiento actual en una órbita inclinada por una relación previa con otra de las lunas y posteriormente se le habría aproximado la casquivana Talasa, colocándose a la distancia adecuada para realizar el baile. Hace ver que se acerca mucho, pero no quiere comprometerse demasiado y en realidad da los pasos adecuados para mantenerse a distancia.

miércoles, 3 de febrero de 2021

Los exoplanetas resonantes y el discordante

La semana pasada se difundió la noticia del descubrimiento de un nuevo sistema planetario con unas características aparentemente sorprendentes.

Dos noticias complementarias sobre el tema, publicadas por el mismo medio los días 26 y 30  de enero, una con mayor acierto que la otra y que, al igual que prácticamente todas, destacan el tema de los movimientos coordinados de los planetas del sistema

Aunque pueda ser inusual, no es la primera vez que se encuentra un sistema planetario interpretando ese tipo de ballet cósmico alrededor de su estrella según unos ritmos a los que técnicamente se les da el nombre de “resonancias”.

Ya se conocen otros ejemplos de sistemas de exoplanetas resonantes incluso más completos que éste, siendo el más famoso el de los Trappist-1 del que se habló mucho hace 4 años, pero como la prensa actual necesita titulares novedosos, los busca donde no los hay.

Imagen artística de Trappist-1, un sistema con más exoplanetas y resonancias que el de ahora.

Pero en realidad parece que sí hay una primicia en el descubrimiento de este sistema llamado TOI-178, que es el nombre de la estrella alrededor de la que giran estos planetas “bailando rítmicamente”, aunque la novedad no está en el tema de las resonancias, sino en cuanto a las densidades de los planetas del sistema y su distribución, tan diferente al ejemplo de nuestro sistema Solar y de otros sistemas extrasolares, que parecía que nos daban unas pautas claras sobre las teorías de formación y migración planetaria como se explicó muy bien en algunos medios:

Tal como nos tiene acostumbrados, el astrofísico Santiago Pérez Hoyos aclara perfectamente la situación en el laureado programa de divulgación científica “La mecánica del Caracol” de Radio Euskadi que puedes oír en este enlace, a partir del minuto 33:45, aunque ya en 30:10 habla de exoplanetas y del sistema Trappist-1

Esta vez la agencia EFE recogió y difundió adecuadamente la noticia, aunque al principio del texto se insiste extensamente en lo menos novedoso y es también con lo que comienza el titular:

El hecho de la “rítmica danza” da atractivo al titular, pero no es lo más importante de cara a "afinar las teorías...”. He incluido un párrafo sobre el que incidiré más adelante. Puedes leer la noticia completa en este enlace.

El asunto de las resonancias

Aunque quizás sea contradictorio por mi parte, voy a aprovechar la noticia para hablar del aspecto que más se ha difundido y del que, como matemático, puedo hacerlo con mayor conocimiento de causa.

En todos los casos se ha remarcado que los planetas TOI-178 están en resonancia. y por eso lo de la "danza rítmica". Concretamente se refiere a una especie de baile sincronizado donde los periodos de traslación de los diferentes planetas están en relaciones de números enteros sencillos. 

Por ejemplo, que cuando uno de ellos da 3 vueltas alrededor de la estrella, el siguiente da casi exactamente 2 (resonancia 3:2), o el caso más sencillo cuando uno de ellos da el doble de vueltas que otro casi exactamente en el mismo tiempo (resonancia 2:1). En el segundo anexo explico lo de “casi”.

Con una resonancia 2:1 coincidirán siempre en la misma dirección respecto a la estrella cuando un planeta ha dado una vuelta y el otro 2. Cuando la diferencia de vueltas es mayor que 1, lógicamente coinciden en varios lugares de la órbita, por ejemplo con una resonancia 3:1 el primer adelantamiento se produce cuando el más lento ha dado solo media vuelta, o si es 5:2 en 3 lugares cada tercio de vuelta, como se puede ver en este post sobre la reciente conjunción Júpiter-Saturno

Además de los satélites galileanos de Júpiter que suelen citarse en la mayoría de los lugares, también entre los planetas y astros menores del Sistema Solar existen unos cuantos casos de resonancias, por ejemplo el que acabo de citar de Júpiter con Saturno que motiva sus conjunciones cada 20 años.

Con unos periodos relativamente próximos a los 30 y 12 años, cuando Saturno da dos tercios de vuelta, Júpiter da una vuelta y dos tercios. Al cabo de 3 repeticiones de este proceso Saturno habrá dado vueltas (3 x 2/3=2) y Júpiter 5 (3 x 1+2/3 = 3 x 5/3 =5) y estarían en resonancia 5:2.
Como se dijo, esto es aproximado.

Recogí más información y ejemplos de resonancias en nuestro sistema en el artículo “
A los planetas  les gustan los números enteros, a los asteroides no”  y en  “El baile sincronizado de los satélites galileanos” 

Como todo esto es bastante técnico, en este blog que presume ser “para todos los públicos” he preferido colocar las explicaciones en los adjuntos para no "torturar" a quienes no les gustan los números (espero no haberlo hecho ya), que ya encontrarán otros temas “más amables” en próximos artículos. Sin embargo, como no son cuestiones complicadas, te sugiero que sigas leyendo si tienes curiosidad, aunque pases de los números que no te interesen.

Antes de ello también hay que insistir en que estas situaciones de resonancia no son casualidades numéricas, sino una consecuencia de interacciones gravitatorias que han influido en la evolución de la disposición del sistema a partir de su situación original y en la migración de estos planetas, de manera que se ha llegado a una configuración donde los parámetros orbitales son estables. Los números no son por lo tanto un punto de partida, sino una consecuencia.


En el sistema TOI-178 se han descubierto 6 planetas, que siguiendo la norma establecida se designan con el nombre de la estrella seguido de las letras b, c, d, e, f y g  (la “a” no se utiliza) y excepto el más cercano a la estrella (el TOI-178 b) que parece que va a su aire, y podemos olvidarnos de él, los otros 5 están en resonancia según una relación completa de 18 : 9 : 6 : 4 : 3

Ello significa que cuando el planeta “c” completa 18 vueltas el siguiente (el “d”) ha dado 9, el “e” 6, el “f” 4 vueltas y el “g” 3.    Considerando los planetas de los extremos, cuando el último de ellos (el “g”) da una vuelta, el primero de los resonantes (el “c”) completa 6 vueltas (ya que 18/3=6). O tomándolos dos a dos, las relaciones en las parejas de planetas vecinos serían 2:1,   3:2,   3:2  y  4:3.  Viendo la frase que me ha quedado, y poniendo un poco de humor, espero que los fríos números no destrocen esas relaciones de pareja.

O así es como se suele explicar, pero luego lo matizo porque los números no son exactos.

Tal como he mencionado antes, en el sistema Trappist-1 ya se encontró este tipo de resonancias pero con más bailarines (hay un planeta más) y mejor coordinados (las relaciones numéricas son más exactas):    En aquel caso se descubrieron 7 planetas, 6 de ellos resonantes y el que iba a su aire era el último, en vez del primero. La secuencia completa de resonancias es  24:15:9:6:4:3, o considerando las relaciones del periodo del vecino más cercano de 8:5,   5:3,   3:2  , 3:2  y  4:3.

Pero volviendo al de ahora, las citadas relaciones numéricas de los TOY-178 se pueden deducir y comprobar a partir de los valores de sus periodos que se recogen en esta tabla:

Todo expresado en días y redondeando a 3 decimales, como en los siguientes resultados, aunque en los cálculos he utilizado más dígitos.
En todo el artículo (espero que no se haya colado ninguna excepción) he utilizado la coma para indicar los decimales. No confundirlo con el signo habitual de los millares que en mi época escolar estaba claro y se ponían a diferente altura, pero actualmente se ven diferentes criterios con el uso de la coma y el punto, y se presta a confusión.

Haciendo las divisiones entre cada pareja de estos números correlativos, se obtiene casi el mismo resultado que dividiendo los números enteros citados. Por ejemplo con la última pareja 20,709/15,232= 1,359  aunque  4/3=1,333

¿Hay algo que no cuadra con las noticias? 

Bueno, repasando todo antes de publicarlo, he repetido los cálculos (también con el primer planeta -el b- sin darme cuenta de que tenía que olvidarme de él) y parece que también hay una resonancia entre él y el siguiente según la relación 5:3 como se puede comprobar teniendo en cuenta que su periodo es 1,915 días: (3,238/1,915=1,691 y 5/3=1,667). 

No modifico lo que ya tenía escrito, y al final del artículo he añadido las razones por las que todo el mundo ha ninguneado al primer bailarín, el pobre TOI-178 b.

Como ya habrás visto con estos números, normalmente no son resonancias exactas y en este caso aunque la relación entre los planetas d y c se dice que es de 2:1, en realidad cuando el planeta d completa exactamente una vuelta el c  había completado las dos ligerísimamente antes, y concretamente ha dado 2,025 vueltas; con lo que cada adelantamiento no se vuelve a producir exactamente en el mismo lugar que el anterior sino un poquito antes y esto, que ocurre en todos los casos, lo retomo en el siguiente anexo por si quieres conocer los curiosísimos detalles, ya que estos desajustes guardan una sorpresa.


Como se ha dicho antes, el baile rítmico de estos planetas TOI-178 se ha anunciado como una primicia, cuando en realidad hay al menos un ejemplo casi idéntico, el citado Trappist-1, pero más completo (un  planeta más), muy anterior (descubierto en 2017) y con el agravante de que fueron muy famosos, y se habló muchísimo de ellos. Yo desarrollé algunos aspectos de aquel sistema en “Los cielos de los planetas de trappist1” , aunque no insistí mucho en este aspecto de las resonancias.



Diferencias con las resonancias exactas

Un aspecto importante a tener en cuenta, que ya he citado varias veces y lo vuelvo a repetir, es que los números que se dan en estas resonancias planetarias no son nunca exactos. Ya se ha dicho que en el caso de TOI-178 c y TOI-178 b cuando éste da una vuelta el otro no da justamente 2, sino 2,025 vueltas (diferencia de 0,025 vueltas), y unas diferencias del mismo orden se dan en las otras parejas (concretamente 0,019,  0,029  y  0,026). Esto es el “casi” que anunciaba al principio.

En el caso del planeta b, del que se dice que no está en resonancia, la diferencia con la relación 5/3 respecto al c es 0,025. Totalmente análoga.

En el sistema Trappist-1 las diferencias con las proporciones exactas son muy inferiores: 0,003,  0,006, 0,006,  0,009  y  0,012, con lo que se acercan mucho más a las resonancias numéricas exactas.

Por tomar de nuevo el ejemplo de Júpiter y Saturno, tampoco aquí la resonancia es exacta e incluso la diferencia entre el cociente de sus periodos (29,46 y 1,86 años) respecto a la relación 5/2 es de 0,12,  mucho mayor que los ejemplos anteriores.

Al ser solo dos astros esta diferencia no influye en otros, pero condiciona la cercanía de los dos planetas en las diferentes conjunciones y los periodos de tiempo entre conjunciones próximas, como se explicó en su día.

¿Por qué se dice que TOI-178 b es un bailarín no coordinado con los otros 5?

Porque en los otros 5 estas diferencia que acabo de citar (respecto a las proporciones de números enteros) están coordinadas de manera que las posiciones relativas de esos cinco planetas se vuelven a repetir (aunque no sea justo cada 18 vueltas de c, como suele anunciarse por simplificar la situación) 

Es lo mismo que en el caso de los satélites galileanos, que recogí en el mencionado post en que hablaba sobre ellos

Allí se señalaba que aunque las resonancias no son exactas y por ello los satélites repiten sus posiciones relativas a lo largo del tiempo en lugares ligeramente diferentes, el punto de adelantamiento de un astro a otro se va moviendo poco a poco.   Pero eso no desajusta al tercero, que también se desplaza de manera que las diferencias con las resonancias exactas están totalmente coordinadas para que las figuras geométricas que forman los lugares de adelantamiento se mantengan y vayan girando. 

Evidentemente todo tiene su origen en las interacciones gravitatorias, pero en aquel caso las configuraciones de las diferentes conjunciones parecían trazadas "a propósito" por un maniático geómetra perfeccionista, y las recogí en este gráfico:

Posiciones en las que se producen los “adelantamientos” o “conjunciones vistas desde Júpiter” de los 3 primeros satélites galileanos.
Si las resonancias fuesen exactas esos puntos permanecerían invariables. Aunque no lo son, toda esta figura va girando lenta y solidariamente según la dirección de la flecha roja pero sin perder su forma.

¿Es posible que esto ocurra también con los cinco planetas exteriores de TOI-178, pero no con el primero, a pesar de estar también en resonancia con su vecino, y por eso se diga que no participa del baile? 

EFECTIVAMENTE:

No es al cabo de 18 vueltas de TOI-178 c (58,292 días) cuando las posiciones de los planetas vuelven a repetirse, sino exactamente cada 57,581 días (la coma indica decimales). Y en este tiempo, cada uno de los planetas ha dado el siguiente número de vueltas:

El c 17,780 (en vez de 18), el d  8,780 (en vez de 9), el e 5,780, el f 3,780, y el g 2,780 vueltas, con lo que a partir de las posiciones en cualquier momento dado, volverán a coincidir en el mismo sitio pero girado 0,780 vueltas, es decir 280,8º, o bien 79,2º antes.

Excepto el "desajustado" planeta b, que en ese tiempo habrá dado 30.075 vueltas, y con ese "pico" de 0,075 vuelta (que son 27º) se habrá "adelantado" un buen tramo a sus compañeros (que se quedaron en 0,780 de la vuelta anterior) destrozando la coreografía.

Si dos cualesquiera de esos planetas resonantes en un determinado momento se encuentran alineados con su estrella en la dirección 1 (en el gráfico, a la derecha de la estrella), al cabo de 57,581 días volverán a estar alineados pero en la dirección 2.  
Si el planeta TOI-178 b se encontrase al principio también en 1, al cabo de ese tiempo estaría en 3

Mi trabajo me ha costado descubrir esos feos números: Intuir la situación, plantear la ecuación adecuada, comprobar los resultados... Pero ahí están, demostrando que las matemáticas subyacen en todos los procesos astronómicos y en este caso han servido para comprobar que todos los planetas de este sistema siguen armoniosamente el baile menos TOI-178 b, que ha perdido el paso.

martes, 21 de mayo de 2019

Astros kamikazes


Hace hoy un año, el 21 de mayo de 2018, una extraña noticia apareció en numerosos medios de comunicación:
En realidad ya se había hablado algo de él en marzo de 2017, aunque no con tanta profusión.

Y dos meses después esta otra:




Se trata de dos pequeños astros de menos de 3 kilómetros que en cierta forma están relacionados con el planeta Júpiter, cuyos nombres son  S/2016 J 2  y  2015 BZ 509  aunque sus descubridores les han llamado familiarmente Valetudo y Bee-Zeb, y serán los protagonistas de este artículo.

viernes, 5 de abril de 2019

Viajando por los satélites (2)


Este post es continuación del anterior y conviene leerlo después de aquel. Si no lo has hecho puedes hacerlo clicando en este enlace

En aquel se citaban algunas características generales de la visión del cielo de los satélites en general, y se hacía un recorrido más detallado, planeta por planeta, hasta Saturno. En este se continúa con la descripción de los satélites de la zona más externa del Sistema Solar, y contiene el anexo opcional en el que se profundiza en algunos aspectos tratados anteriormente.

Satélites de Urano.
Aunque esto no tiene nada que ver con su cielo, hay que decir que una característica curiosa que tienen los satélites de Urano es que los nombres que se les han asignado son personajes de obras literarias, sobre todo de Shakespeare, y no están tomados de la mitología como ocurre con todos los demás.
Debido a que Urano tiene su eje de rotación casi paralelo al plano orbital, el cambio de fases del planeta visto desde los satélites (y viceversa) es lentísimo durante unos años, manteniéndose muy cercano al cuarto (esto ocurrirá hacia 2030). Luego oscila creciente-menguante sin pasar por llena o nueva, y luego tiene el ciclo habitual, completo.

Fases de Urano vistas desde sus satélites en diferentes épocas. (Por ejemplo desde Miranda, el primero de sus grandes satélites, a intervalos de 8.5 horas)

martes, 26 de marzo de 2019

Viajando por los satélites (1)

Una vez analizados los cielos de los diferentes planetas del Sistema Solar en varios artículos de este blog, voy a intentar elucubrar cómo se verían los astros desde algunos de sus satélites.

Muy posiblemente dentro de un tiempo (mucho tiempo) se organizarán viajes turísticos por el Sistema Solar. Nuevos sistemas de propulsión permitirán organizar nuestras vacaciones por los distintos astros.

Si estás pensando en planificar  un viaje de esos y no te quieres limitar a las rutas clásicas te voy a dar alguna idea. 
Aunque bien pensado, si alguna vez se hace turismo por el Sistema Solar, los diferentes destinos estarán situados mayoritariamente en los satélites, ya que excepto Mercurio y Marte, no podríamos pasear por ningún otro planeta. Con superficie gaseosa o en el caso de Venus con temperaturas abrasadoras, sería imposible permanecer allí. En este sentido, solucionados los problemas de la radiación y del frío, los satélites con su superficie sólida serán mucho más acogedores.

El número y la variedad de destinos es grande. Hoy se conocen casi 200 satélites en el sistema solar, concretamente 185 moviéndose alrededor de los 8 planetas, y 11 de varios astros del cinturón de Kuiper, incluído Plutón, siendo Júpiter el que más tiene con 79, aunque no es definitivo porque se siguen descubriendo más.
En esta imagen tomada por la sonda Cassini aparecen 5 satélites de Saturno.
Créditos: NASA-
Gordan Ugarkovic

viernes, 1 de marzo de 2019

El borde de la noche


Siguiendo con el tema del artículo anterior, con la duración de la noche, en éste se matiza su comienzo y final. Porque aunque digamos que es de día cuando el Sol está sobre el horizonte y que es de noche en caso contrario, lo cierto es que el paso de una a otra no es instantáneo.

¿Cuándo empieza la noche?
Depende. Hay varios criterios diferentes.

Después de que se pone el Sol, hay un periodo en que poco a poco el ambiente se va oscureciendo. Unos momentos casi mágicos en que los colores del cielo suelen mostrarnos unas tonalidades especiales, frecuentemente rojizas, de una gran belleza. Lógicamente después de haberse puesto el Sol, éste va bajando tras el horizonte y el cielo va tomando distintos tonos cada vez más oscuros. Es el crepúsculo.
Júpiter y Spica aparecen en el cielo crepuscular.   Julio de 2017

Si llamativo es el cielo y el horizonte por donde se ha puesto el Sol, también puede parecernos especial si miramos en sentido contrario, hacia el Este, porque posiblemente podamos ver entre unos 10 y 20 grados de altura una banda de color rosado o morado, muy diferente a los colores rojos del atardecer, a la que se le llama el cinturón de Venus.
El color rosa del arco se debe a la dispersión de la luz del Sol, enrojecida al atravesar la atmósfera.

 Y por la parte inferior del cinturón de Venus, entre éste y el horizonte, aparece  una franja oscura que es la sombra de nuestro planeta proyectada en la atmósfera. Según el Sol va bajando por debajo del horizonte Oeste, la sombra de la Tierra aparece por el Este subiendo. Muchas veces se aprecia claramente un cambio brusco de tonalidad, de un azul todavía claro, a una zona casi negra.
El cinturón de Venus y la sombra de la Tierra se aprecian en esta preciosa imagen de Christine Churchill

Algo similar ocurre antes de amanecer. Si nos levantamos cuando todavía es de noche, veremos que poco a poco el cielo va clareando y, si está despejado, en un momento da la sensación de que ya hay claridad suficiente y que el Sol debe estar a punto de salir, pero parece que se hace de rogar y tarda más de lo que debiera. En este caso mirando hacia el Oeste podría apreciarse también el cinturón de Venus, que va bajando hacia el horizonte.

domingo, 24 de junio de 2018

¿El día más largo ... de la historia de la Tierra?

Tomado de http://cadenaser.com/ser/2018/06/21/ciencia/1529570848_381322.html , donde puede leerse el artículo

Pues va a ser que no.

Hace un par de días me pasaron este curioso artículo para pedirme mi opinión sobre su veracidad.
Bajo mi punto de vista es correcto en cuanto a las explicaciones y razonamientos, pero no en la conclusión que da título al artículo.

Frecuentemente suelen aparecer titulares como este, exagerados, que hacen referencia a algún aspecto sin apenas relevancia (las diferencias son del orden de diezmilésimas de segundo) pero que el titulo le hace parecer algo importante.
Posiblemente yo también lo habré hecho más de una vez y habré realzado demasiado algún detalle para llamar la atención, pero es que en este caso en mi opinión el titular no es cierto.
Sin ir muy lejos, el día del solsticio de verano (el 21 de junio) del pasado 2017 fue más largo que este año.

sábado, 16 de junio de 2018

Una luna muy esperada

El pasado jueves día 14 durante el crepúsculo vespertino, muchas personas desde diferentes lugares del mundo  estuvieron intentando ver la fina luna creciente apenas un día después de la fase nueva. 
En algunos de los lugares fue imposible y tuvieron que esperar un día más. Pero desde otros situados más al Oeste, donde en esos momentos del ocaso ya nuestro satélite tenía una fase algo mayor, lo consiguieron y se celebró el llamado Eid al-Fitr con verdaderos festines con familiares y amigos. Era la llegada del mes de Shawwal en el calendario musulmán y con él, el final del Ramadán.

Luna en fase muy fina junto al horizonte. La de anteayer fue incluso más fina

Además, aunque parezca extraño, relacionado con esto, mañana domingo día 17 se producirá un curioso cambio de hora en Marruecos, al implantarse el horario de verano, meses después de haberse hecho en todos los países que realizan el cambio estacional.


A diferencia de lo que ocurría en la antigüedad, hoy en día los astros nos afectan muy poco en nuestra vida. Sin embargo hay excepciones y todavía quedan culturas que mantienen algunas costumbres relacionadas con ellos, siendo ésta una de las más claras, y un ejemplo de integración de ciencias con culturas.
Es significativo que en este tema del Ramadán están implicados de manera importante la Luna y el Sol. La primera en la determinación del comienzo y final de este mes, y el astro rey en su principal característica, el ayuno, que debe ser continuo mientras el Sol esté sobre el horizonte.

La Luna también es protagonista en otras tradiciones y festividades: no olvidemos que la Semana Santa católica siempre ocurre en la primera luna llena de primavera o que la gran fiesta del año nuevo en China se celebra en la luna nueva más próxima al momento central del invierno.

miércoles, 2 de mayo de 2018

El cielo se mueve, el espectáculo cambia


Después de los dos últimos artículos de este blog, que recogían aspectos concretos y cercanos, es un buen momento de hablar de temas generales del cielo porque esta primavera los astros se animan y además quiero volver a los orígenes describiendo aspectos básicos porque intuyo que tengo nuevos lectores que se empiezan a asomar a este blog y a este mundo.
En cualquier caso, como siempre, en los anexos se pueden encontrar cuestiones más técnicas para público iniciado.

Este artículo también es diferente de los otros más de 150 que ya llevo escritos, en cuanto a la utilización de un nuevo recurso: el diálogo. Porque de vez en cuando conviene cambiar. Son preguntas un poco ingenuas pero que muchas veces suelen surgir.


En ocasiones suelo hablar de los dos paisajes que siempre podemos tener ante nuestros ojos: el paisaje del horizonte hacia abajo y el del horizonte hacia arriba. Aunque este último sea el menos observado, en realidad es un escenario donde el espectáculo que allí se da siempre es diferente. Incluso más que el patio de butacas, separado por el horizonte, desde el que lo miramos.


Observar ese espectáculo y enseñarlo siempre es interesante y placentero. Y si no, que se lo digan a Roberto y Aitor, dos entusiastas profesores de un colegio de Bilbao, con quienes colaboramos desde la AAV en una observación colectiva hace unos días. En los 2 últimos años habían programado 6 observaciones astronómicas y las 5 anteriores tuvieron que suspenderse por culpa de las nubes; alguna incluso a última hora porque la niebla echó por tierra las optimistas previsiones meteorológicas. En esta ocasión la suerte estuvo de nuestra parte.
Observación en el colegio Trueba de Bilbao el 20-4-18

Pero quizás dentro de unos meses se animen nuevamente a intentarlo, porque la función que se vea en el cielo será diferente.

martes, 6 de marzo de 2018

El cielo del planeta anillado


Uno de los objetos más vistosos que se pueden observar por un telescopio es sin duda el sexto planeta. Saturno, el de los anillos.
Pero hoy no vamos a mirarlo en nuestro cielo (ahora mismo solo puede verse de madrugada a horas intempestivas), sino que vamos a pensar cómo se vería el cielo desde allí, y éste será uno más de los artículos de la serie “los cielos de otros mundos” en la que ya he dedicado un capítulo a cada uno de los anteriores planetas.
Al igual que en el caso de Júpiter, como Saturno no tiene superficie sólida vamos a suponer que podemos situarnos en el borde de su atmósfera y mirar desde allí hacia arriba.

Por supuesto, la imagen más especial y totalmente diferente del cielo de los otros planetas sería la visión de los anillos,
Aunque se han catalogado varios anillos, solamente son claramente apreciables los denominados A y B, que están separados por la llamada división de Cassini. A estos anillos me referiré en todos los casos.
Pintura de Ron Miller sobre la que se han indicado los anillos A, B y división de Cassini.

Los anillos vistos desde Saturno

Según la latitud, la imagen de los anillos será muy diferente: Desde las zonas cercanas a los polos no se pueden ver al quedar por debajo del horizonte, pero al ir viajando hacia el ecuador, aproximadamente a partir de la latitud 60º ya se podría apreciar su borde más lejano sobresaliendo sobre el horizonte nuboso en dirección sur (si estuviéramos en el hemisferio norte de Saturno), como se aprecia en las siguientes ilustraciones.