Curiosidades sobre los astros, propuestas de observaciones sencillas, aspectos cotidianos pero poco conocidos, todo ello con un enfoque didáctico.

Mostrando entradas con la etiqueta Fenómenos. Mostrar todas las entradas
Mostrando entradas con la etiqueta Fenómenos. Mostrar todas las entradas

miércoles, 13 de diciembre de 2023

Y Betelgeuse se oscureció

 

Aunque no fuera total, y a la espera de hacer estudios de su curva de luz en las observaciones realizadas y la situación geográfica de cada una, la anunciada ocultación de la estrella Betelgeuse por el asteroide Leona ocurrió la madrugada del día 12 como estaba previsto.


            Momento preciso de la ocultación, obtenido por Oscar Martín Mesonero (startrails.es)

Hay que resaltar que, tal como se dijo, es la primera vez que se tiene constancia de un fenómeno de este tipo: una ocultación parcial y progresiva de una estrella por un asteroide, que aunque las ocultaciones ocurren a menudo, siempre son instantáneas y totales. Por tanto hay que valorar y justificar la emoción que se aprecia en algunos audios, ya que puede decirse que ha sido algo histórico.

Es por ello que he decidido recoger, aunque me salga del esquema habitual de usar mis materiales, varias observaciones con el permiso de sus autores, a quienes se lo agradezco.

Desgraciadamente la transmisión en directo que anuncié en el anterior post fue suspendida a causa de las nubes en el lugar de observación:

Pero pero voy a poner a continuación algunas imágenes y vídeos del fenómeno, que pudieron verse desde otros lugares en que hubo más suerte.

- A pesar de las nubes altas que hubo durante toda la observación, mis colegas de ApEA y amigos Sensi Pastor y José Antonio de los Reyes desde su observatorio de Cehegín, a 14 km de la teórica línea central de la ocultación obtuvieron este vídeo, donde Betelgeuse aparece a la derecha de la imagen:

En esta curva de luz que elaboraron, se aprecia la caída de la magnitud de la estrella entre las 1:15:15 y 1:15:25 (TU)



- Desde Cieza (Murcia), justo en la teórica línea central, a donde se desplazó Oscar Martín Mesonero (startrails.es): 

Y obtuvo este magnífico vídeo, con varias secuencias de la ocultación al final tomadas con diferentes ampliaciones:


Que se puede ver en Youtube https://www.youtube.com/watch?v=SWHkEqFgtmA&t=51s y realmente merece  la pena.

- Un vídeo donde también se ve claramente la bajada de brillo de Betelgeuse es el que obtuvo José Franco de Astroingeo (Alicante):



- Un estético montaje realizado por Leonor Ana Hernández, con imágenes de Orión y Betelgeuse eclipsada y sin eclipsar, enmarcadas en otra con mayor campo desde La Sagra (Granada)

Leonor publicó esta imagen en Twitter, como siempre acompañada de comentarios jugosos y emotivos, que te aconsejo lo veas:  https://twitter.com/LeoAstronomada/status/1735002158884425781/photo/1


- Aquí otro vídeo de la ocultación (hay imagen a partir del segundo 10), en este caso obtenido desde La Romana (Alicante) por Josep Masalles, que tuvo como colaboradores a Toni Selva, Rafael Quiles, Carles Schnabel, Carles Perelló y Jordi Juan: 


Que además recogen en https://astronomia.josepmasalles.cat/transits-i-ocultacions/ocultacio-de-betelgeuse-per-lasteroide-leona-2023-12-12/ los detalles de la observación y resultados obtenidos.

Analizando los diferentes datos y emplazamientos de las observaciones se obtendrán sin duda mejoras en la órbita de Leona, la posición de Betelgeuse, los tamaños de ambas,... Tal como se indicaba en el post anterior.

Es posible que vaya añadiendo algún dato más, pero quería dejar constancia cuanto antes de este fenómeno que ocurrió ayer 12-12 y quedará en los anales de la astronomía.


viernes, 8 de diciembre de 2023

Un fenómeno quizás nunca visto antes

Imaginemos que el próximo 11 de diciembre estamos en Córdoba o en Alicante, o en un lugar cercano a la línea que une estas dos capitales. Trasnochamos y algo después de las 2, ya del día 12, estamos mirando al cielo. Sería muy probable que dirigiésemos nuestra vista hacia la zona de Orión por ser la constelación más llamativa, que aparece en una extraña posición vertical, y quizás nos detendríamos en Betelgeuse, su estrella más destacada que a esa hora estará en la esquina superior izquierda de la constelación.

Justamente a las 2:15 veríamos algo extraño: Durante unos 10 o 12 segundos, que quizás nos parecieran mucho más, el brillo de esta estrella rojiza empezaría a debilitarse, quizás se apagase del todo, para volver a encenderse y alcanzar su brillo habitual.

Simulación de lo que podría ser la ocultación

No sería un efecto de nuestro subconsciente, sino algo que realmente había ocurrido y que no se tienen referencias de que haya sido observado antes: La ocultación parcial de una estrella por un asteroide.

Zona de la península Ibérica desde donde podría observarse la ocultación. El mayor oscurecimiento de la estrella se vería previsiblemente desde la línea roja y hay probabilidad de ver algo dentro de la franja, aunque disminuye según nos alejamos de la línea central. Imagen de cloud.occultwatcher.net

En general, este fenómeno de ocultaciones de estrellas por asteroides es frecuente porque hay un gran número tanto de unas como de los otros, y suele ocurrir que un asteroide, que evidentemente no tiene luz propia y por su pequeño tamaño prácticamente no nos llega la luz que refleja, pasa por delante de la estrella y bloquea la luz que nos llegaría de ella. Vemos cómo la estrella se apaga. Pero otros observadores que estuvieran en otros lugares no lo verían:

Desde el punto A de la superficie de la Tierra se apreciaría en ese momento la ocultación, pero desde el punto B no. La distancia a la estrella es infinitamente mayor que la reflejada en este esquema.

Pero esto suele ocurrir con estrellas débiles porque su número es muchísimo mayor, aunque en este caso se trata de una de las estrellas más brillantes del cielo, y no solo eso sino que es la de mayor tamaño angular vista desde la Tierra. 

Esa es la clave para que su ocultación sea "diferente" y no se tenga referencia de la observación de algo igual.

Exceptuando el Sol, las estrellas están tan lejos que se ven como puntos, pero Betelgeuse fue la primera que pudo detectarse como un disco. Por ello en cualquier otra ocultación el punto de luz de la estrella desaparece repentinamente pero en este caso la luz de Betelgeuse irá debilitándose y hasta es posible que desaparezca, aunque las previsiones indican que probablemente será un eclipse anular y si el cielo está limpio no llegará a apagarse del todo.

La mejor imagen de Betelgeuse de que se dispone, obtenida por el gran telescopio VLT



El asteroide que provocará este fenómeno se llama (319) Leona, y se conoce su forma y tamaño aproximado precisamente porque se han analizado dos ocultaciones que produjo en dos débiles estrellas hace pocos meses.

¿Cómo se hace para conocer tamaño y forma, además de su rotación?

Una red de observadores situados en diferentes lugares cronometran el tiempo que dura la ocultación y la hora en que se produce, y como la lejanía de la estrella hace que es como si proyectara su forma sobre la superficie de manera directa, la diferencia de latitud de los dos lugares más alejados desde los que hubo observación y la diferente duración de la misma en distintos puntos intermedios darán las dimensiones del asteroide según su orientación en ese momento.  A partir de su sombra se obtiene la forma del asteroide.

Digo “sombra” en sentido figurado porque no es que oscurezca, evidentemente, porque la estrella no nos alumbra, sino que dejamos de verla cuando estamos bajo la “sombra” del asteroide.

En el punto A se vería una ocultación mucho más breve que en B y que en C. Empezaría a la vez que en B y terminaría a la vez que en C

Como la trayectoria de los lugares desde los que se ve la ocultación de la estrella es larga, (en este caso se podrá observar de China a México) tardará unos cuantos minutos de un punto a otro  y el asteroide va girando, con lo que los diferentes resultados de las observaciones permiten estimar su rotación. 

En este caso no solo podrán determinarse de manera más exacta las características de Leona, que ya se sabe que tiene un tamaño entre 50 y 80 km siendo irregular y ligeramente elíptico, sino también el tamaño real de Betelgeuse o su posición real en el cielo, ya que al ser de gran tamaño es más difícil que con otras estrellas. Además su superficie tiene zonas más claras y más oscuras, y su disco no es uniforme, y esto quizás también podría estimarse con los datos de la ocultación.

Da también la casualidad de que el tamaño aparente de Betelgeuse y de Leona (vistos desde la Tierra) son muy similares, del orden de 50 milésimas de segundo de arco, pero el asteroide no es circular sino de bordes irregulares, por lo que según la orientación de Leona podría producirse una ocultación total o anular.

Curiosamente en 2019 se apreció un paulatino debilitamiento de Betelgeuse e incluso se pensó que eso indicaba una próxima explosión como supernova, aunque finalmente se comprobó que se debía a una gran eyección de masa en su superficie que luego formó una nube de polvo que bloqueó la luz de la estrella, en un fenómeno que nunca se había observado anteriormente y que duró varios meses. 


Imagen de Betelgeuse obtenida por el VLT en diciembre de 2019 donde se aprecia el polvo que oscurece parte de la luz de la estrella. Créditos / ESO/M. Montargès

Lo de ahora no tiene nada que ver con aquello, será muchísimo más breve pero más evidente para quienes tengan la suerte de verlo, y también será un fenómeno único.

En cualquier caso, se trata de un fenómeno excepcional por su rareza y, aunque no podamos verlo directamente, habrá transmisiones vía internet, por ejemplo en este enlace

También hay proyectos de ciencia ciudadana relacionados con la ocultación, como el organizado por Starblink.org . En su web (que incluye un interesante simulador) y en otras páginas técnicas se describen los materiales y los procedimientos a utilizar para obtener datos que se puedan luego compartir; pero si lo que quieres es disfrutar del excepcional evento solo necesitas desplazarte a la franja de observación, que no haya nubes por la zona, y abrir los ojos.

.....................

12-12-23

Próximamente incluiré imágenes y vídeos de la ocultación, obtenidas esta madrugada por astrónomos aficionados, en un nuevo y breve post.

lunes, 4 de diciembre de 2023

Eclipses: Parejas y tríos


Atendiendo a una petición, y aunque sea con algo de retraso, voy a tratar algunos aspectos relativos a los eclipses

Sin duda los eclipses son los fenómenos astronómicos más relevantes sobre todo de cara al gran público.

Hace un par de meses ocurrieron dos eclipses, el 14 de octubre de sol y el 28 de Luna

Alguien me dijo que parecía una casualidad, dos tan seguidos, aunque lo cierto es que siempre ocurre algo parecido. Precisamente los próximos serán el 25 de marzo, penumbral de luna, y el 8 de abril, total de sol.  Pero podrían haber sido tres.

Como en la mayoría de las relaciones humanas, los eclipses normalmente van por parejas pero de vez en cuando también aparecen los tríos. Dos de luna escoltando a uno de sol o al revés, todos ellos separados por 14 o 15 días.


Veamos las razones, empezando por el principio:

Si la órbita en que la Tierra gira alrededor del Sol (la eclíptica) y la de la Luna alrededor de la Tierra estuvieran en el mismo plano, en todas las lunas llenas y nuevas habría eclipse:

Pero entre ambos planos orbitales hay una inclinación de poco más de 5º, y los puntos en que se cortan (en los que la Luna se ve en la eclíptica) se llaman nodos. La Luna estará en el nodo ascendente (que se representa por la letra omega) cuando pasa del sur al norte de la Eclíptica, y el descendente (una omega invertida) el contrario.

Para que se produzca un eclipse la Luna debe estar cerca de uno de los nodos y así se interponga en la dirección del Sol (eclipse de Sol) o entre en la sombra de la Tierra (eclipse de Luna). Además, tal como se ha dicho, deberá ser luna llena o nueva para que los 3 astros estén alineados

Tanto en A como en B se han representado las dos posiciones de la luna en llena y nueva. En A no hay eclipse porque aunque están alineados los tres astros, la Luna no está en la eclíptica y las sombras pasan por debajo del otro astro. En B hay eclipses.

Después de un eclipse en que la sombra pase exactamente por el nodo, debido a la traslación de la Tierra, en cada lunación la línea Sol-Tierra-Luna (o Sol-Luna-Tierra) va apuntando a lugares diferentes y se va alejando del nodo (cada media lunación va retrasando el paso por el nodo) de manera que no se producirá un nuevo eclipse, aunque el nodo también se desplaza pero mucho menos:

En 1 hay eclipse de luna al coincidir la luna llena con el paso por el nodo (en este caso el ascendente). En la siguiente lunación en 2 no hay eclipse porque la Luna no está en el nodo y la sombra de la Tierra pasará por encima de ella.

Si la Luna nueva está exactamente en el nodo se producirá un eclipse total o anular de sol, y si la luna llena está en el nodo (o muy cerca de él) se producirá un eclipse total de Luna. Pero no es necesario que esté exactamente en el nodo para que ocurra un eclipse, y considerando también los parciales y penumbrales, es suficiente que la Luna (nueva o llena) esté a una distancia al nodo menor de 16.4º  en los de sol y 15.7º en los de luna, tal como se calcula en el anexo. Estos números pueden variar ligeramente según las distancias entre los 3 astros ese día, de manera que estos números son los valores medios.

Por ejemplo, el siguiente gráfico representa la situación del último eclipse de Luna, del 28 de octubre de 2023, donde la distancia de la Luna (en el momento del máximo del eclipse) al nodo es de 14.52º después de pasar por él. Al ser menor que 15.7º se produjo el eclipse, pero al no estar muy cerca del nodo fue bastante pobre.

Si la distancia de la Luna al nodo durante el eclipse hubiera sido menor, como en el siguiente caso, la parte eclipsada de la Luna lógicamente habría sido mayor.

Estas imágenes planas son la representación de una porción de la esfera celeste, por lo que la distancia del nodo al centro de la sombra de la Tierra es un ángulo y se expresa en grados, siendo prácticamente igual a la distancia del nodo a la posición de la Luna.

Como se ha dicho, la clave está en que los eclipses ocurren necesariamente en luna nueva o llena, y cerca de los nodos de la órbita lunar, con los márgenes indicados antes. Tal como se representa en el siguiente gráfico, si ocurre un eclipse antes del nodo (por ejemplo de Sol y luna nueva en la posición 1) al cabo de media lunación ocurrirá otro (en luna llena -2-) después de pasar la Luna por el otro nodo.

Debido a que la Tierra se ha desplazado en esas 2 semanas en su movimiento de traslación, la posición relativa respecto al nodo de la luna llena o nueva no será la misma y en la mayoría de los casos en la siguiente ocasión ya se habrá alejado y no habrá eclipse. Como se verá luego, también influye en menor medida el ligero desplazamiento de los nodos.

Pero en ocasiones hay margen para que ocurran 3 eclipses también separados por 2 semanas del primero al segundo y del segundo al tercero: de Luna-Sol-Luna como en el siguiente gráfico, o de Sol-Luna-Sol.

En este caso el primero (1) ocurrirá con la Luna relativamente alejada del nodo, aunque dentro del margen indicado, el segundo (2) muy cerca del nodo con lo que será un eclipse muy bueno, y el tercero (3) con la Luna alejada también del nodo.

Esta situación, vista desde la Tierra, se representa en el siguiente gráfico, donde se ha desplegado toda la línea de la eclíptica en una recta:

Se ha situado el primer eclipse (a la derecha) justo en el borde del margen para ver la situación más favorable para que ocurran más eclipses. Aún así, y aunque se producen 3 eclipses, el tercero está casi en el otro borde, por lo que es extremadamente difícil que en las situaciones medias, ocurran 3 seguidos: A poco que el 1 se acerque al nodo, el 3 se saldría del margen.

Para mayor detalle repito el mismo gráfico con más parámetros que, aunque puedan hacerlo más engorroso, justifican mejor el resultado. 


Al igual que en el gráfico anterior y el siguiente, todo está a escala

Por tanto, cabe justo justo un trío comenzando y acabando con eclipses penumbrales mínimos (en el borde de los márgenes), pero sería mucha casualidad.

Una pareja siempre entrará, porque el primer eclipse (1) siempre estará en el margen previo al nodo (antes de él, porque si estuviera después del nodo habría ocurrido otro eclipse antes), con lo que media lunación después (en 2) también habrá eclipse porque estará también en la zona dentro del margen del siguiente nodo, pero si el primer eclipse no ocurre al principio del margen como antes, en 3 ya se saldrá y no habrá más, como se aprecia en este otro gráfico:

En este caso se producen solo dos eclipses seguidos, que es lo más habitual.

Todo esto se obtiene redondeando y utilizando valores medios de los parámetros, pero que varían ligeramente según las posiciones de la Tierra y la Luna en sus órbitas. En el anexo se calculan los diferentes parámetros y se recogen en los gráficos.

 

¿Hay muchos tríos?

Tal como puede deducirse de la anterior explicación y los gráficos, no son muchos.

Concretamente entre 1950 y 2050 ocurren 22 tríos frente a 184 parejas. Los tríos son 10 de Sol-Luna-Sol y 12 de Luna-Sol-Luna. 

El último fue en 2020 y el próximo será en 2029, ambos en junio y julio. De todas formas no hay que decir la frase de "¡Todavía faltan más de 5 años!" porque una pareja es más interesante que un trío, ya que los de los extremos de éste son eclipses muy pequeños (los de sol solo parciales y visibles desde latitudes muy altas, y los de luna solo penumbrales) 

Por ejemplo, desde la mayor parte de la península Ibérica se verá un extraordinario eclipse de sol total y un eclipse de luna casi total en agosto de 2026. ¡Ya queda menos!

Es muy curioso constatar que todos los tríos de este periodo ocurren en la misma época del año:

De los 22 citados, 9 fueron en junio-julio, 7 en julio-agosto, 3 en agosto-septiembre y 2 en mayo-junio y 1 en abril-mayo

Claramente prevalece las cercanías a julio y en esos 100 años no ocurre nunca en invierno ni en otoño.

Esto es porque en el afelio (principios de julio) la Tierra se mueve más despacio y por ello la lunación es más corta (como se explica en el anexo de este artículo). Con ello se acortarían los intervalos entre las lunas nuevas y llenas, y como se deduce de los gráficos anteriores entrarían más fácilmente dentro de los márgenes. En los meses próximos a enero ocurre lo contrario: al pasar la Tierra por el perihelio las lunaciones son más largas, la distancia entre la posición 1 y 3 de los gráficos anteriores será más grande y será difícil (aunque no imposible) que ambas queden incluidas en los márgenes con lo que normalmente no habrá tríos.



En este anexo aparece mucha geometría y trigonometría, para deducir el tamaño de los márgenes de los eclipses. Si no te gustan esas cosas, te aconsejo que no lo mires.

Vamos a obtener los diferentes parámetros numéricos que se han utilizado en la explicación, concretamente los márgenes en torno al nodo, dentro de los cuales se producen los eclipses. 

- En los eclipses penumbrales de Luna: (su margen será el máximo incluyendo todos los tipos de eclipses lunares)

a) Cálculo previo. Gráfico en alzado, con la eclíptica de perfil.

Como el cono de penumbra está determinado por las rectas que tocan el Sol y la Tierra cruzándose entre los dos astros, se calcula primero la distancia del borde del cono, a la Tierra (Y). Se utilizan como datos la distancia media del Sol a la Tierra y el radio de los dos astros, utilizando triángulos semejantes.

  

b) Se calcula la distancia máxima de la Luna al eje del cono de la sombra para que se produzca un eclipse penumbral (Z), y luego el ángulo desde la Tierra del eje del cono al centro de la Luna Se traza desde el centro de la Tierra porque el gráfico no está a escala y el tamaño a escala de nuestro planeta sería mínimo. (z)

c) El siguiente gráfico está en un plano perpendicular al anterior, delante de él. Está en alzado, con la eclíptica horizontal. Se calcula la separación máxima u de la Luna respecto al nodo, se le llama n al valor obtenido de alfa, y está a escala.

 

- En los eclipses de Sol

Tal como se representa en el siguiente gráfico, en principio para que haya eclipse la distancia angular entre el centro del Sol y el de la Luna debería ser menor de 0.5º porque cada uno de ellos tiene un radio aparente de 0.25º. Pero desde cada lugar de la Tierra se ve la Luna en diferente posición por el paralaje, y los eclipses de Sol no se ven igual desde diferentes lugares. Desde una posición media la Luna puede verse a 0.95º desde un extremo, tal como se calcula.

Así al sumar 0.95º + 0.5º queda 1.45º a los que estaría la Luna separada del Sol como máximo para que se produzca el eclipse.


Si buscas estos datos en internet, es probable que encuentres valores diferentes. Eso es porque aquí se han tomado valores medios y en el caso de los eclipses de luna en ocasiones se no se consideran los penumbrales.

Eclipse parcial.

a) Si queremos obtener el margen para un eclipse parcial, habrá que empezar calculando la longitud del cono de sombra de la Tierra (Z), que en promedio, será:

b) Distancia máxima de la Luna al eje del cono de la sombra para que se produzca un eclipse parcial (La Luna tocará el cono de sombra, o mejor dicho lo intersectará muy levemente)

c) Ángulo desde la Tierra del eje del cono al centro de la Luna. Se traza desde el centro de la Tierra porque el gráfico no está a escala y el tamaño a escala de nuestro planeta sería mínimo. Se toma el centro de la Luna porque es la referencia que se utiliza para determinar su situación:

d) Finalmente en un triángulo esférico situado en un plano perpendicular a los anteriores se calcula el margen N:

10.5º es el margen medio para un eclipse parcial. Si queremos calcular el margen máximo, que es lo que suele aparecer, el cálculo será igual pero con la Tierra en el afelio  (distancia al Sol 152100000 km) y la Luna en el perigeo (a una distancia de 356600 k)
 
Margen máximo de un eclipse parcial

Se obtiene exactamente igual que en el cálculo anterior pero tomando la posición de la Tierra en el afelio (Distancia Tierra-Sol= 152000000 km) y la Luna en el perigeo (Distancia Tierra-Luna = 356595):

Este es el valor que se suele encontrar: "Un eclipse lunar solo puede ocurrir cuando la luna está  a menos de 11.4º de uno de los nodos" 
Pero cuidado, que esta condición es necesaria pero no suficiente.

Eclipse total de Luna

 Los cálculos serían igual que los anteriores, pero en el apartado c) en vez de sumar el radio lunar (0.25º) habría que restarlo porque toda la Luna debe quedar dentro del cono de sombra.

sábado, 21 de octubre de 2023

Eclipses: es el turno de la Luna

 El pasado 14 de octubre se produjo un eclipse de Sol y, como siempre ocurre, con dos semanas de diferencia (en este caso después) tenemos otro de Luna. Concretamente la noche del sábado 28 al domingo 29.

Es solo un eclipse parcial, donde solo se oscurecerá una pequeña zona de la Luna, pero eso no le quita la magia de ver algo "diferente" ni la admiración por la precisión de la mecánica celeste.


Para compensar, el eclipse del día 14 se vio solamente en América que es precisamente el único continente en que éste prácticamente no se verá.


Aunque no compensa del todo con el de dos semanas antes, porque los eclipses de Sol son mucho más espectaculares. Aquel fue anular y este solo parcial, muy pequeño y hay una zona en América (el Noreste de Brasil) en que se ven el principio y el final de uno y otro respectivamente, además de las 5 islas occidentales de Canarias donde se vio el principio del de sol y también se verá el de luna.

A diferencia de los eclipses de Sol, los de Luna se ven simultáneamente desde todos los lugares en que puedan observarse. El eclipse en su fase parcial comenzará a las 21:35 (Hora Central Europea), el máximo será a las 22:15 y acabará a las 22:52. Como en todos los eclipses de Luna, hay dos fases penumbrales al principio y al final, cuando la Luna se oscurece muy ligeramente, pero apenas son perceptibles. Sobre los eclipses penumbrales escribí hace tiempo un par de artículos.

Tomando como referencia el horizonte de Madrid, la situación será la de este gráfico, y para otras localidades de la península solo cambiara un ligero giro de la Luna:


La sombra terrestre se deslizará por el sur de la Luna, hacia el cráter Tycho, el que más destaca en luna llena, y cuando esté ya muy próxima a él se retirará hacia la derecha.

Para la península Ibérica son horarios muy buenos, teniendo en cuenta además que será en fin de semana. Hay que recordar que los eclipses de Luna son simultáneos desde todos los lugares en que sean visibles, pero claro; el momento de la noche en que ocurren depende de la longitud geográfica. En China o Australia ya será el final de la noche y en el Este de Brasil será el comienzo de la misma. Por eso la Luna aparecerá girada respecto al horizonte local:

Imágenes de cómo se verá el máximo del eclipse desde diferentes lugares

A pesar de que en latitudes altas del interior del círculo polar ártico en estas fechas es casi noche perpetua, la Luna llena (que está en la zona opuesta al Sol) tiene presencia las 24 horas, y durante el eclipse alcanzará una buena altura. Como puede verse en el mapa, desde lugares cercanos al polo Norte, se verá el eclipse completo por esa misma razón mientras que en la zona antártica cercana al polo Sur (está en la zona 8) no se verá porque no aparece la Luna sobre el horizonte.

Este eclipse es pequeño porque ocurre relativamente lejos del nodo (en este caso el ascendente).


Eso hace que cuando se produce la luna llena y nuestro satélite pasa cerca de la sombra de la Tierra, ya se ha separado bastante de la eclíptica y solo "toca" un poco esta sombra.

Estas circunstancias geométricas trataré de explicarlas en un próximo post.

El postre del espectáculo

La noche del eclipse la Luna estará acompañada de cerca por el brillante planeta Júpiter, y si tenemos un telescopio, entre vistazo y vistazo a la Luna, casi más llamativo será observar Júpiter y el desplazamiento de sus satélites, concretamente durante el eclipse Calisto e Io se van acercando al disco de Júpiter. 

Posición de los principales satélites de Júpiter en el momento central del eclipse de Luna

Y si seguimos observando horas después, veremos como Io pasa por delante del planeta precedido por su sombra pero Calisto pasa por el Sur sin acercarse demasiado, e incluso podrá verse cuando, más tarde, Io vuelve a salir y separarse del disco de Júpiter. 

Sobre estos temas y la descripción de los fenómenos puedes leer "Júpiter, ahora sí", aunque lo escribí hace años.

Situación a las 4 h del día 29 (las 5 si no has cambiado la hora)

Es una buena excusa para pasar la noche observando, y si anotas las horas de los fenómenos, ten cuidado porque en la Unión Europea es precisamente esa noche cuando se cambian los relojes para adecuarlos al horario de invierno. Algunos cambian ellos solos, pero otros no.


ACTUALIZACIÓN  29-10

En Bilbao la mayor parte del tiempo estuvo nublado, pero con algunos claros esporádicos que permitieron ver algo del eclipse en no muy buenas condiciones. Como muestra, estas dos imágenes del momento central y cerca del final.



miércoles, 11 de octubre de 2023

Un anillo de luz para el continente americano

Este próximo sábado día 14 se producirá un nuevo eclipse, en este caso un eclipse de sol anular. La mecánica celeste brindará un bonito espectáculo, que curiosamente solo será observable desde América, y aunque quienes no estamos por allí solo podremos verlo a través de las imágenes que como es habitual se envían a través de internet (por ejemplo en https://www.youtube.com/watch?v=2LXe8luM4i8 ) o los medios de comunicación, siempre se puede aprender algo.


Este 2023 se cumple la norma más habitual de que ocurran 4 eclipses en un año: una pareja de Sol y Luna separados por 2 semanas, y al cabo de medio año otra. Concretamente el 20 de abril fue el eclipse de Sol híbrido seguido por el penumbral de Luna el 5 de mayo, y ahora después de este anular viene el parcial de Luna el 28 de octubre. En definitiva, este año 4 eclipses diferentes.

Pero volvamos al del sábado: El anillo de Sol podrá verse sucesivamente en una banda que proveniente del Pacífico cruzará Estados Unidos de Noroeste a Sureste, tocará suelo mexicano en la península del Yukatán, casi todos los países de América central (Belice, Honduras, Nicaragua, Costa Rica, y Panamá), continuará viéndose desde Colombia y Brasil, acabando en el Atlántico.

Gráfico de NASA

Es realmente llamativo cómo casi toda la franja de anularidad (la línea roja del centro de la imagen) queda contenida en zona terrestre tocando muchos países americanos. Desde luego no ha ocurrido anteriormente algo similar con otro eclipse, al menos en los últimos siglos.

Pero como siempre ocurre en estos casos, a ambos lados de la franja de anularidad se observará un eclipse parcial, y es aquí donde sorprendentemente se ajusta al continente americano y prácticamente solo allí. Podrá observarse en todo él excepto en la zona más meridional de Chile y Argentina, y fuera de América únicamente en los archipiélagos del Atlántico y muy levísimamente desde la costa occidental de África (Mauritania, Senegal, Gambia, Guinea...) y las islas Canarias (excepto Lanzarote y Fuerteventura ) desde donde solamente se verá ponerse el Sol en el mar faltándole un mordisco en la parte inferior, muy similar a éste que pude ver en agosto de 2017 desde el sur de Burgos.


Si estás en América, aprovecha la oportunidad y, si puedes, intenta desplazarte hasta donde se vea el anillo. Cuidado con la vista porque en ninguna fase de este eclipse se puede mirar directamente al Sol, utiliza gafas especiales, o proyecta la imagen con telescopio o prismáticos, pero no te pierdas el fenómeno, porque aunque no tengas ningún medio técnico para observar, una de las cosas más sorprendentes que se pueden ver en estos casos es el efecto Pinhole cuando la luz del Sol atraviesa las hojas de los árboles y proyecta curiosas imágenes en el suelo.

Imágenes tomadas durante la observación de los eclipses solares de 2005 y 2006. La de abajo a la derecha es el mencionado efecto pinhole.



¿Por qué un eclipse anular?

Cuando desde nuestra perspectiva el Sol y la Luna se sitúan en la misma posición en el cielo, si el tamaño aparente de la Luna fuese mayor ocultaría completamente al Sol y se produciría un eclipse total. En caso contrario sería anular. 

Por una gran casualidad, el Sol y la Luna se muestran prácticamente del mismo tamaño vistos desde la Tierra, pero un tamaño que varía ligeramente ya que también lo hacen las distancias a las que se encuentran estos astros: Cuando la Tierra está en el perihelio de su órbita (más cerca del Sol), lo que ocurre siempre a principio de año, éste se verá más grande (1´ más que si está en el afelio), y en principio hay más probabilidad de que se produzca un eclipse anular.

Sin embargo es más decisivo el otro factor: el tamaño aparente de la Luna, ya que al ser su órbita más excéntrica que la de la Tierra, su tamaño aparente varía en mayor medida que el del Sol (casi 5”) y si está cerca del perigeo dará eclipse total, mientras que en el apogeo será anular.

En este eclipse del próximo sábado el anillo no será de los más anchos: la Luna está solo un poco más cerca del apogeo que del perigeo (mostrando un tamaño más bien pequeño, recordemos que hace solo dos semanas hubo superluna) y la Tierra está solo ligeramente más cerca del perihelio (primeros de enero frente al afelio a primeros de julio).

Concretamente la imagen del Sol varía entre 31´ 31´´ y 32´ 33´´, siendo ahora de 32´02´´. Mientras la Luna lo hace entre 29´ 20´´  y  34´ 6´´, y el día del eclipse será de 29´ 55´´ que como es apreciablemente inferior al del Sol, el eclipse es anular.

En el siguiente gráfico se recogen estas circunstancias:


Gráfico geométrico de este eclipse



En España:

Como la mayoría de lectores de este blog no viven en América, y todo lo relatado les resultará lejano y de poco interés, recojo ahora un par de datos con el recorrido total y el de la anularidad del último eclipse anular ocurrido por aquí, por si le trae recuerdos, y el próximo para ir pensando en organizarse:

3-10-2005


Si volvemos a mirar el mapa global del eclipse de ahora, se aprecia muy bien que las geometrías son casi idénticas, y eso es debido a que los dos eclipses son de la misma serie SAROS (el nº 43 y 44) separados por 18 años y 11 días. Si en aquel caso la sombra tocó 3 continentes (Europa, Asia y África) es porque la geografía es diferente a la de América.

26-1-2028

El eclipse final del magnífico trío que se podrá observar desde la península Ibérica entre 2026 y 2028