Curiosidades sobre los astros, propuestas de observaciones sencillas, aspectos cotidianos pero poco conocidos, todo ello con un enfoque didáctico.

Mostrando entradas con la etiqueta Medida del tiempo. Mostrar todas las entradas
Mostrando entradas con la etiqueta Medida del tiempo. Mostrar todas las entradas

lunes, 30 de junio de 2025

La duración de los días


Este post tiene dos partes muy diferentes.

- Por un lado, citar una noticia de Xataka que me acaba de llegar sobre el que podría ser el día más corto de nuestra vida que está a punto de producirse, y de lo que ya escribí hace tiempo que va en la misma línea aunque los datos sean diferentes. He puesto solo los enlaces para no copiar ni repetir, porque ya está publicado y además todo ello sería demasiado largo.

Añado este otro enlace o donde explico el efecto de la fase lunar en este tema que aparece, pero solo citado sin detallar, en el artículo de Xataka

- Por otra parte, voy a dar explicaciones que me pidieron en un comentario al artículo anterior que también trataba sobre la duración de los días, pero no sobre el día solar verdadero como el citado arriba, sino del día frente a la noche como aclaré en "22 de diciembre ¿el día más largo?" de lo que también trata éste. Por ello, ambas partes no tienen nada que ver, pero en ambos casos se trata de la duración de los días.

En el artículo anterior de este blog, se recogió la característica más remarcada y conocida del solsticio de verano: Es el día de mayor duración y el de la noche más corta. 

Esto quiere decir que a partir de esa fecha los días durarán cada vez menos (aunque con las temperaturas de estos días no lo parezca), pero no se suele mencionar si esta reducción es paulatina poco a poco, o más o menos brusca, no siempre con el mismo ritmo, y sobre ello el interesante comentario de un lector, que voy a intentar contestar: primero de manera lógica e intuitiva, y luego, en el anexo, utilizando fórmulas. Como he hecho más de una vez, antes de nada quiero recomendar a quienes no les gustan los números que pasen de esa parte final.

Efectivamente en una latitud media a partir del solsticio de invierno los días se alargan muy poco a poco: apenas unos segundos, o poco más si tomamos más días posteriores. Luego cuando va llegando el equinoccio lo hacen mucho más rápidamente, más de 2 minutos cada día, para volver a disminuir esa diferencia e irse acortando hasta el solsticio de verano. En ese tramo la duración del día empezará a disminuír, primero solo un poco y luego más.

En estas dos imágenes obtenidas a la misma hora con dos días de diferencia y cerca del solsticio, se aprecia (aunque no muy evidente) que el día se va acortando muy poco a poco en estas fechas. (En la segunda se ve que el Sol está más cerca del horizonte comparándolo con la altura de la torre)

Si antes del solsticio de invierno el día va disminuyendo y justo después irá aumentando, en este momento de cambio drástico de sentido no puede ser de mucha amplitud, sino poco a poco. Luego, cuando todos los días van aumentando, no hay problema para que el aumento sea rápido.

En realidad es lógico y ocurre en cualquier fenómeno natural cíclico, por ejemplo en las mareas, que cerca de pleamar y bajamar apenas se notan los cambios, pero en las horas intermedias si.

Gráfico de las 2 pleamares y 2 bajamares de un día.

Si la marea está subiendo y luego empieza a bajar, es lógico que esa bajada al principio sea suave, pero cuando ya ha bajado un trecho, la velocidad con que continúa bajando aumenta. Aquí es algo parecido.

Un gráfico muy similar podemos hacer con el ecuador celeste, la eclíptica (el camino que sigue el Sol a lo largo del año) y las posiciones del Sol:

En este caso hay un parámetro que analizaremos previamente, que es la declinación del Sol y cómo cambia. La declinación de un astro es su distancia angular al ecuador celeste: Por ejemplo si un astro está en el ecuador su declinación es cero, y la declinación del Sol estará entre 23.5 y -23.5.

Posteriormente, a partir de la declinación obtendremos la duración del día y su evolución.

Partimos de la esfera celeste

Sabemos que la figura no es real (no es el Sol el que gira alrededor de la Tierra) pero es un recurso didáctico útil que permite comprender lo que observamos desde aquí.

A partir de ella proyectamos en un plano el ecuador (quedará una recta horizontal) y la eclíptica (que describirá una sinusoide), colocaremos varias posiciones del Sol según varios días (d1, d2, d3…). En realidad la separación en las posiciones de estos días se ha exagerado para una mejor visualización y se han colocado equidistantes aunque en realidad no lo sean (por la diferencia en perihelio y afelio) pero esas diferencias son mínimas, no siendo significativas en lo que queremos obtener.

También se podría proyectar desplegando la eclíptica como una recta horizontal y el ecuador describiría la sinusoide, pero en realidad los resultados serían los mismos.

Supongamos 3 días consecutivos (d1, d2, d3,…) a partir del equinoccio y los solsticios. Los cambios en las declinaciones del Sol son muy diferentes (están marcados en el gráfico por las líneas rojas a trazos)

Aquí está la clave de esas variaciones en las diferencias en la duración del día, que sigue el mismo criterio que la declinación: Desde el solsticio de invierno hasta el de verano va aumentando, pero a distinto ritmo: mientras en las proximidades del equinoccio aumenta apreciablemente de día en día (llave verde), cerca de los solsticios lo hace muy poco a poco (llave roja). 

Para que las diferencias en las variaciones de un día a otro fuesen iguales, y con ello las diferencias en las declinaciones, la situación debería ser así:


Pero esta sería una representación errónea, ya que en la esfera celeste la eclíptica nunca se proyectará con tramos de líneas rectas.

 

La duración del día está condicionada por la declinación solar en ese día y esto condiciona también el lugar de salida y puesta de Sol (Solsticio significa que el Sol está casi quieto).  

El Sol sale, y se pone, siguiendo una trayectoria que cerca del horizonte tiene una inclinación igual a la colatitud del lugar (por ej para una latitud de 40º una inclinación de 50º) En realidad la trayectoria del Sol es curva, y ese ángulo de colatitud corresponde al formado por dos planos que pasan por el centro de la esfera celeste: el horizonte y el que contiene a la trayectoria del Sol. Dos ángulos de un triángulo esférico donde el tercer plano es el que contiene la declinación. Por eso en la siguiente representación uno de los lados se "sale" de la trayectoria del Sol.


Cuanto mayor sea la declinación del Sol estará más cerca de la trayectoria del solsticio de verano y lógicamente amanecerá antes, se pondrá más tarde y la duración del día será mayor, como se explica con el siguiente gráfico:



En los equinoccios el Sol se sitúa en el ecuador celeste, y la duración del día es aproximadamente de 12 horas. Si a la hora en que sale el Sol en los equinoccios (con declinación cero, en C), en otra fecha se que se sitúa en A cuya declinación sea positiva habrá salido antes que el punto C del ecuador (por donde transita en los equinoccios) pero más tarde que el punto B del solsticio de verano. 

Aunque esa diferencia de duración del día no es proporcional a la diferencia de declinación, están relacionadas y si ésta es pequeña también lo será la de la duración del día

Como se ha dicho, la declinación del Sol cambia mucho en las cercanías de los equinoccios y muy poco en las de los solsticios y puede calcularse numéricamente, como se puede ver en el anexo. Si estás acostumbrado a manejar números no tendrás ningún problema en seguirlo, pero en caso contrario puedes leer las conclusiones de los resultados



.

Se puede calcular, aplicando una sencilla fórmula de trigonometría esférica, cuánto dura aproximadamente un día en una fecha determinada. El resultado no será totalmente exacto porque no se tiene en cuenta la diferente velocidad de la Tierra en su órbita, pero más que suficiente para nuestros objetivos de hacer comparaciones:

Un poco de teoría que se necesitará en los cálculos: Los elementos de un triángulo esférico y una de las fórmulas que se utilizan para resolverlos:

En estos triángulos los lados se miden también en grados

En nuestro caso se toma el triángulo esférico ABC de la siguiente figura, delimitado por el corte de la esfera celeste con 3 planos que pasan por el centro de la misma., y utilizaremos la fórmula en que el cociente de dos elementos opuestos entre los valores de sus senos es el mismo en todos los casos (una de las dos igualdades junto a la figura anterior.


Comenzamos en el equinoccio de primavera, por sencillez en el planteamiento. Así el solsticio de verano será el día 92


Se ha tomado hasta el día 95 para apreciar el cambio de tendencia, una vez pasado el solsticio (día 92) y los días 30, 31 y 32 como muestras de los valores de la declinación entre solsticio y equinoccio.

A partir de estos valores de la segunda columna (DC) se calculará la duración del día (alargamiento respecto al equinoccio), que viene determinado por AB en el siguiente gráfico.


AB se multiplica por 2 para sumar la salida y la puesta de Sol, por 24/360 para pasar de ángulo a tiempo en que tarda en recorrerse y  al final por 8 para pasar a minutos (0.133 . 60 =8)

Todo esto, para una latitud 40º N.

Utilizando los valores de BC calculados antes, las tercera y cuarta columnas nos indican cuánto tiempo ha alargado el día después del equinoccio, en decimales de minutos (T.a. min), o en minutos y segundos (Min:seg), y la última, lo que ha alargado respecto al día anterior, que es lo que nos interesa:

Conclusiones

En la última columna, se aprecia que la diferencia con el del día anterior a partir del día 92 (solsticio de verano) tendremos el acortamiento de los días, pero muy lento, como puede verse en los últimos números (menos de un minuto), nada que ver con el alargamiento de más de 2 minutos los días cercanos al equinoccio de primavera (en la tabla, los primeros días que aparecen). Sin embargo a pesar de ser mucho mayores varían muy poco a poco.

Todos los cálculos pueden realizarse  de manera análoga para otras latitudes y comparar los resultados, que cuanto más cerca de los círculos polares las diferencias serían mayores.

Con este último triángulo podría calcularse también el lado AC que nos proporcionaría los lugares de salida y puesta de Sol (el punto C está exactamente en el oeste) y veríamos que tiene una variación análoga a la duración del día: cerca del equinoccio bastante diferencia de un día a otro, que casi se anula al llegar al solsticio, lo cual parece lógico. 

Es interesante obtener estos datos para diferentes latitudes.

Como ya he puesto muchos números, lo dejo a quien no los aborrezca y quiera practicar.


lunes, 16 de junio de 2025

Solsticio de junio

 

Un año más ya llega el verano (el invierno en el hemisferio sur) exactamente el día 21 a las 2:42 U.T. (4:42 Hora Central Europea). En el hemisferio norte es el día más largo y la noche más corta, aunque la tradición la asigne erróneamente a la noche de San Juan, que en otra época llegó a serlo.

La noche de las hogueras de San Juan no es la más corta del año


Ese día el Sol pasa por el cénit a mediodía en cualquier lugar del trópico de Cáncer, y se dice que fue el dato que utilizó Eratóstenes para determinar el tamaño de la Tierra en el siglo II a.C.

Esta experiencia fue explicada por Carl Sagan en la magnífica serie televisiva "Cosmos" en los años 80 

Puede resultar chocante que las temperaturas máximas no se den en los alrededores del día del solsticio, sino posteriormente en toda la estación del verano, pero eso mismo (los días más fríos) ocurre en el invierno, y es porque estos fenómenos son acumulativos.

La causa de las estaciones es la inclinación del eje de rotación de la Tierra respecto al plano de su órbita alrededor del Sol, y justamente cuando el Sol se sitúa a una distancia angular máxima al norte del ecuador celeste (declinación positiva máxima) es el solsticio. En ese momento empezará el verano en el hemisferio norte y el invierno en el sur. A diferencia del cambio de año, que en cada lugar se realiza a distinta hora, el cambio de estación es simultáneo en todos los países, aunque lógicamente según el meridiano o la zona horaria, la hora oficial variará de un lugar a otro.

Como siempre en estos casos hay que diferenciar el momento del solsticio (por qué decimos que este año será a las 2:42 U.T.) y el día del solsticio (la fecha en la que está situado el momento del solsticio, este año el 21 de junio)

El primer dato corresponde al momento en que la declinación solar es máxima, cuando el plano que contiene al eje terrestre y es perpendicular a la órbita (eclíptica) contiene al Sol.

Gráfico en planta, desde el norte

La misma situación en el siguiente gráfico de perfil, que suele ser más utilizado y quizás más clarificador, aunque en mi opinión puede ser didácticamente pernicioso porque induce a pensar erróneamente que la orbita es muy excéntrica.

Gráfico en perspectiva

Actualmente, y aunque parezca paradójico, el comienzo del verano casi coincide con la posición de la Tierra más lejos del Sol, en el afelio. Lo que produce el aumento de las temperatura no es la cercanía del Sol, sino que éste se sitúe más alto respecto a nuestro horizonte y que nos caliente durante más horas. En el hemisferio Sur, donde coinciden ambas circunstancias parece lógico que se alcanzaran mayores temperaturas, pero la mayor extensión de los océanos lo atenúa.

La determinación del momento exacto del solsticio (cuando la declinación del Sol es máxima) exige cálculos técnicos, pero el día del solsticio (como se ha dicho la fecha correspondiente a ese momento) es mucho más fácil de comprobar, mediante una de estas dos condiciones: a) Es el día en que el Sol alcanza la mayor altura (a mediodía)  b) Es el día en que sale más lejos del Este, en dirección nordeste (En el hemisferio sur será sureste) y que da lugar al día más largo.

La primera condición no es válida en la zona intertropical como se verá luego, y la segunda  no es válida en los círculos polares porque hay día perpetuo y el Sol no sale ni se pone.

¿Por qué cada año hay una pequeña diferencia en el momento de producirse el solsticio?

Hace dos años, en 2023 fue el día 21 a las 14:59, el pasado año 2024 el día 20 a las 20:50 y el próximo 2026 el día 21 a las 8:21, todo en tiempo universal (TU)

El principal motivo de la variación es el desajuste del año real (365.242 días) con los 365 días que dura oficialmente, por lo que cada año será unas 6 horas más tarde, y el salto más significativo es precisamente en el año bisiesto porque como se ha contabilizado un dia más (29 de febrero), la fecha del comienzo de las estaciones retrocederá unas 18 horas (24 por el día de más, menos las 6 habituales) lo que suele llevarlo a la fecha anterior.

En realidad la diferencia no son esas 6 horas exactas, sino que ronda las 5 horas y 46 minutos, debido a otras causas como la retrogradación de los equinoccios, y el desplazamiento del afelio.

Ya escribí sobre el solsticio de verano el año pasado, pero quería insistir, añadir algún dato más y cumplir lo que dije que faltaba y prometí publicarlo en un futuro.

Como he dicho, en el solsticio el Sol alcanza la altura máxima de todo el año, pero hay que matizar porque eso ocurre si estamos fuera de la zona intertropical. Pero curiosamente en el ecuador, a mediodía, el Sol alcanzará la menor altura del año (solo 66º 33´), alcanzando la máxima altura (90º) a mediodía de cada uno de los dos equinoccios. 

Es en los trópicos donde en uno de los solsticios el Sol se sitúa a 90º

Lógicamente la máxima altura la alcanza el Sol al mediodía, a las 12 hora solar verdadera del 21-6 (o del 20-6) aunque no coincida exactamente con el momento del solsticio. Como curiosidad, y teniendo en cuenta la latitud y la ecuación del tiempo, la mayor altura del Sol de todo el año 2025 en Madrid será el día 21 a las 14:22 (hora oficial) en que llegará a los 72º 41´, en Barcelona a las 13:58 con 71º 43´, en Bilbao a las 14:19 con 69º 50´, o en Santa Cruz de Tenerife a las 14:12 (hora oficial canaria) con una altura de 84º 38.

Actualmente esta estación que está a punto de comenzar es la más larga de las cuatro, lo que pueden agradecer quienes viven en el hemisferio norte y aprecian el calor (cada vez menos por el calentamiento global). Su duración es de 93.5 días, frente a los 92.7 de la primavera, 89.8 del otoño y 89 del invierno.

Estas diferencias son debidas a la excentricidad de la órbita terrestre que hacen que la velocidad de la Tierra sea variable a lo largo del año. Justamente nuestro planeta pasa por su afelio el 3 de julio, en el verano; y por ello es cuando su velocidad es menor. Además el recorrido es mayor y por los dos motivos tardará más en recorrer el tramo correspondiente a esta estación.

La órbita es casi exactamente circular , pero el Sol está claramente a cierta distancia del centro

Además, como el afelio está relativamente próximo al final de la primavera, esta estación es casi tan larga como el verano, y la más corta es el invierno cuando la Tierra pasa por el perihelio y se mueve más rápida además de realizar un menor recorrido.

Pero esta situación va cambiando muy lentamente debido al movimiento de los puntos correspondiente al afelio y perihelio además de la precesión de los equinoccios.

La fecha del paso por el afelio se va retrasando y en el futuro próximo el verano será cada vez largo produciéndose la situación extrema en el año 4410  cuando la Tierra pasará por el afelio el 14 de agosto y el verano llegará a ser de 94.5 días frente a la primavera con 91, el otoño 90.5 y el invierno que apenas variará. Luego empezará a disminuir la duración del verano mientras aumentará la del otoño.

Retrocediendo en el tiempo, hace solo 500 años el afelio ocurría a finales de primavera y por ello esta estación era la más larga.

Hay que insistir en que la causa de estos cambios no es solo que se retrase el afelio, sino que debido a la precesión de los equinoccios el lugar que ocupa el Sol al comienzo de las estaciones se adelanta y con ellas las referencias de nuestro calendario. 

En los 2385 años hasta el 4410, el Sol retrograda 40º por la precesión de los equinoccios, y el afelio se mueve 33º en sentido contrario, por lo que la posición del Sol solo diferirá en 7º en los momentos de los dos afelios, aunque con las fechas del calendario sea bastante más (42 días, o 43º)

 


En el post del año pasado relativo a este mismo tema recogí la posición de los planetas del Sistema Solar durante su verano en el hemisferio norte y en el solsticio, excepto en Mercurio y Urano porque en ellos la situación es muy especial. Prometí que realizaría una explicación en el futuro, y voy a intentarlo ahora.

En el resto de planetas el verano comienza con el solsticio: Tal como se ha dicho, con la mayor altura del Sol a mediodía en latitudes medias del correspondiente hemisferio, y una duración máxima del día, con la salida del Sol más hacia el nordeste y puesta más hacia el noroeste (en el hemisferio norte)

Como se vio, por ejemplo en Venus el presente verano ha comenzado el 26-4-25, en Marte empezará el 28-8-25 en Júpiter el 30-11-35, en Saturno el 31-10-46 y en Neptuno el 25-2-87. En todos los casos considerando el hemisferio norte.

Pero en Mercurio el eje de rotación prácticamente está perpendicular al plano de traslación y por tanto puede decirse que no hay estaciones como tal, según el concepto que se utiliza en los otros planetas. Por ello el recorrido diario del Sol es igual todos los días. En ninguno de los dos hemisferios hay épocas en que el Sol alcance mayor altura a mediodía ni días en que salga por un lugar diferente.

Sin embargo en Mercurio, debido a la forma de su órbita, sí hay lugares donde el Sol calienta más por estar más cerca y sobre todo porque pasa un mayor tiempo en el punto más alto de su recorrido y sus alrededores. Se trata de los meridianos 0º y 180º, desde donde incluso se le vería retroceder y volver a avanzar.

Por tener una órbita muy excéntrica, podría considerarse que comienza el verano cuando el planeta se aproxima a su perihelio y la temperatura aumentará, pero especialmente en los meridianos indicados: Próxima fecha el 19 de agosto.

Hay un lugar en la superficie de Mercurio donde esto ocurre en su cénit. Muy cerca de allí está la llamada Cuenca Caloris, donde efectivamente se dan las mayores temperaturas, y cuando los rayos solares se acercan verticales a ese lugar podría decirse que comienza el verano

Cuenca Caloris ¿la referencia del verano en Mercurio?

En Urano la situación es totalmente opuesta ya que el eje de rotación está casi en el plano orbital de traslación con solo 8º de desviación. Allí sí cabe hablar de estaciones en el mismo sentido que en los otros planetas, pero las situaciones son extremas.

Antes de nada hay que tener en cuenta que su año dura 84 años terrestres, y lógicamente cada estación unos 21. Actualmente es primavera en el hemisferio norte de Urano y el verano empezará el 8-5-2030 cuando el Sol alcanza una declinación de 82º 10.5´

Para referirnos al solsticio de verano no tendría sentido el hablar del día en que el Sol sale más alejado del sur (hacia en nordeste) porque prácticamente durante casi medio año y alternativamente en cada uno de los dos hemisferios el Sol no sale ni se pone porque hay día perpetuo. En muchas latitudes los meses próximos al solsticio no saldrá.

El otro indicador, el día que el Sol alcance la mayor altura a mediodía en latitudes medias, tampoco sería válido para determinar el día del solsticio de verano, Por ejemplo para una latitud media de 40º N el día del solsticio (8-5-2030 porque el Sol tendrá la máxima declinación) alcanza una altura máxima de 48º (y mínima de 33, ya que se produce el sol de medianoche), pero un año terrestre después, ya entrado el verano, alcanza los 49º y 10 años después, en medio del verano los 84º. 

En fechas incluso no muy cercanas al solsticio de verano habrá día perpetuo

Para encontrar algo parecido al comportamiento del Sol desde la Tierra, podemos examinar lo que ocurre en Urano en los equinoccios. El recorrido del Sol es similar, aunque a diferencia de aquí alcanza casi la misma altura máxima que en el solsticio de verano.

Ambos gráficos corresponden a un lugar de latitud 40º, y desde allí mismo en fechas próximas al solsticio de invierno será noche perpetua, y habría que ir al hemisferio sur en esas mismas fechas para encontrar día perpetuo.

En este planeta se cumple la lógica (errónea en la Tierra) de que un día de pleno verano el Sol alcanza una mayor altura.

Puede parecer lógico, pero no olvidemos que en nuestro planeta cuando más calor hace no es cuando el Sol está más alto, justamente en el solsticio. En el primer caso es día perpetuo y en el otro no.

En la Tierra las excepciones surgen en las zonas intertropicales y en los círculos polares. La situación en Urano es algo "especial". Debido a la gran inclinación del eje, todos lugares de latitud mayor que 8 grados estarían en el círculo polar y por ello el día del solsticio habría día perpetuo casi en la mitad del planeta. Pero los de latitud menor que 81 estarían en zona intertropical, con lo que el solsticio el Sol llegaría a los 90º de altura.

En fin, que se mezcla todo y se obtienen unos resultados cuando menos, curiosos.

Para acabar, el gráfico que elaboré hace un año, pero ya con los deberes hechos y la inclusión de todos los planetas:


O sea, que si te gusta veranear aunque el viaje sea largo, aquí tiene las fechas y los lugares del comienzo de la estación del calor


domingo, 16 de junio de 2024

El solsticio de verano

 

Este próximo día  20 de junio de 2024 a las 22:51 (20:51 U.T.) comienza el verano en el hemisferio norte y el invierno en el sur. Es el solsticio.

Ya he escrito alguna vez sobre esta fecha: por ejemplo en este post   donde remarcaba la diferencia entre el solsticio y la fiesta de San Juan (tradicionalmente la noche más corta, aunque no sea así), y en este otro donde se recogían las distintas circunstancias que determinan el comienzo de la primavera, pero en general también de las otras estaciones.

Quedaba claro que el motivo de las estaciones se debe a la inclinación del eje de rotación de la Tierra, y el solsticio de verano ocurre cuando el plano que contiene al eje y es perpendicular al plano orbital (a la eclíptica), contiene también al Sol. O dicho de otra manera, cuando la dirección norte o sur (según el hemisferio) del eje se dirige hacia el Sol.

Esto en realidad sería el momento exacto del solsticio, aunque normalmente nos referimos al día del solsticio como la fecha en que eso ocurre.

Dos conceptos que se pueden determinar de manera diferente, y aunque el momento exacto es simultáneo en todo el planeta y solo cambia por la zona horaria, por la misma razón puede variar la fecha, y por ejemplo en Asia el verano empezará cuando allí sea ya el día 21.

Si el momento exacto del comienzo de esta estación solo puede calcularse teóricamente y no es evidente para un observador, sí podría determinarse experimentalmente el día del solsticio porque es el día más largo del año, en el que el Sol sale más alejado del este (más cerca del N) y se pone más lejos del oeste (hacia el NO).

Además el solsticio de verano es el día en que el Sol alcanza una mayor altura a mediodía, aunque esto solamente es válido fuera de la zona tropical.

En estos gráficos se recoge el recorrido diario del Sol el día del solsticio de verano en diferentes latitudes y la altura máxima que alcanza, a mediodía. Además del punto de salida o puesta con la distancia angular al este o al oeste (en color azul).

Puede apreciarse que en el trópico llega a pasar por el cenit, pero no así en el ecuador. Por otra parte en el polo, aunque sea por poco, la máxima altura la alcanza en el momento exacto del solsticio (este año a las 20:51 U.T., como se ha dicho)

Como puede verse en estos otros dos gráficos a continuación, en el interior de los trópicos hay otras fechas en que el Sol llega a estar en el cénit. Por ejemplo en la latitud 10ºN es el 15 de abril o el 26 de agosto, y en el ecuador será en los equinoccios

Deducción aproximada del comienzo del verano a partir de observaciones sencillas

Puede ser un ejercicio didáctico interesante y podemos constatar el cambio de estación nosotros mismos observando las salidas o las puestas de Sol, por dos métodos diferentes: el lugar de la puesta y la hora. 

Deberíamos de tener la suerte de que estuviera despejado el horizonte por donde se va el Sol durante los días clave.

- Podemos ir observando en diferentes días la puesta de Sol, cómo éste se pone cada vez más hacia la derecha (en el hemisferio sur sería a la izquierda) anotando las fechas, pero un buen día se para en este sentido y vuelve otra vez en el contrario. Es cierto que estos días la diferencia es muy pequeña y para apreciarla quizás sea necesario obtener fotos con teleobjetivo, pero en unos pocos días podría notarse, y aunque no nos sirva para determinar con exactitud la fecha del solsticio en el momento en que ocurre, puede hacerse a posteriori comparando fotos y posiciones del Sol, y no deja de ser algo interesante.

A partir de una imagen real de una puesta de sol sobre Santander tomada el 10 de junio, se ha añadido la posición el día del solsticio, remarcando ambas.

- Teóricamente también podría comprobarse anotando la hora en que se pone el último rayo de Sol cada día. Como el día del solsticio es el más largo, antes de él la puesta de sol ocurriría cada vez más tarde, y luego volvería a adelantarse. Pero ¡cuidado!, porque esto es en horario solar que no es el que indican nuestros relojes.

En los horarios obtenidos habría que corregir la ecuación del tiempo, porque el día más largo no es cuando más tarde se pone el Sol según nuestro horario oficial. Además en cada latitud ese día en que más tarde se pone es diferente aunque el momento del solsticio sea el mismo.

Pueden utilizarse los valores de la última columna de esta tabla:

Por ello, a la hora en que vemos ponerse el Sol podemos restar el tiempo de la columna verde "Corrección respecto al día 17" y obtendremos las diferencias reales en hora solar: los días antes del solsticio ese valor irá aumentando porque aumenta la duración del día y después de él irá disminuyendo. Aunque se comience otro día diferente al 17, la utilización de la tabla será la misma. 

Como muchas veces aparece esta duda, hay que decir que aunque el solsticio de verano supone el día de mayor duración y altura del Sol (con las excepciones indicadas), no debe pensarse que en sus inmediaciones se produzcan las épocas más calurosas, sino que estas son esperables en los 3 meses de la estación que ahora comienza, porque estos fenómenos naturales no ocurren simultáneamente  con sus causas, sino que van con un cierto retardo por ser acumulativo.

De hecho, las posiciones del Sol en verano coinciden con las de primavera, en sentido contrario (por ejemplo principio de primavera con final de verano)


En esta ocasión, además de estas cosas terrenales, querría reflejar algunas diferencias y fechas respecto a otros planetas. 

En la mayoría de los casos las características de las estaciones son similares a las de la Tierra,  y a continuación va un gráfico con las posiciones y fechas en que comienza el próximo verano en cada planeta, pero hay dos casos muy particulares (Mercurio y Urano) que por ello no se incluyen aquí:

Lugares de las órbitas en que se encuentra cada planeta cuando comienza el verano, y fecha del próximo.

En Marte, Saturno y Neptuno las estaciones son similares a las de la Tierra en cuanto a su geometría, con inclinaciones del eje entre 23º y 30º, mientras que en Venus y Júpiter son mucho más leves, con inclinación de solo 3º

Los ejes de rotación de Mercurio y de Urano tienen unas inclinaciones muy especiales, extremas, y habría que definir de otra manera las estaciones allí. La mecánica celeste en cuanto a las posiciones y movimiento aparente del Sol es muy particular y pienso dedicarles un post para ellos solos. De momento solo quiero adelantar que en Mercurio debido a la excentricidad de su órbita hay días especialmente largos desde determinados lugares porque el Sol sale y se pone dos veces cada día:



miércoles, 18 de enero de 2023

Conjunción planetaria en el año nuevo chino

En esta entrada voy a mezclar dos temas que aunque no tienen nada que ver, coinciden en la fecha y están motivados por los astros.

A diferencia del nuestro, el comienzo del año chino tiene su referencia en el cielo. Este próximo 22 de enero en China se celebra el año nuevo. Quizás la fiesta más popular de aquel país, donde millones de personas se desplazan para reunirse con su familia. Una fiesta de gran tradición y cuyo inicio está marcado por la Luna.  

Millones de desplazamientos para reunirse ese día tan especial

Efectivamente, el día del comienzo de año es el día de la luna nueva central del invierno, es decir la más próxima al 5 de febrero que es el día equidistante entre el solsticio de invierno y el equinoccio de primavera. Dicho de otra manera, sería el día de luna nueva situada entre el 21 de enero y el 20 de febrero. Aunque quizás en este caso podría decirse que el año comienza el día de la conjunción.

   

Como 12 meses lunares son 354 días, 11 días menos de los 365, cada vez el año nuevo chino se va adelantando 11 días, pero entonces en 2024 sería el 11 de enero, que se sale del intervalo y habrá que esperar a la siguiente luna nueva, el 10 de febrero. Por eso el año que ahora empieza tendrá 13 meses

La mayoría de los pueblos de la antigüedad celebraban el comienzo del año con el principio de la primavera, o como los meses estaban marcados por las fases lunares, con la luna nueva cercana o posterior a ese equinoccio. Era lógico porque es en esa estación cuando la naturaleza despertaba del letargo invernal y todo se ponía en marcha de nuevo. 

Pero en China parece que eran más optimistas y cuando ya pasaba la mitad del invierno consideraban que era el momento de comenzar un nuevo ciclo. Pero la referencia en nuestro calendario es el 5 de febrero y ellos no la tenían. La manera de calcularlo era con la primera luna nueva que ocurra después de 30 días del solsticio de invierno. Y esa referencia sí la tenían, observando las puestas de sol.

Es curioso que si miramos las lunas en un calendario parece que hay algo que no cuadra: nos marca luna nueva el día 21 de enero. La explicación es que esa fase se produce a las 21:56 hora central Europea, que en China ya es día 22, concretamente serán las 16:56

El cielo ese día

Precisamente ese día se produce un fenómeno celeste destacado: la conjunción de Venus con Saturno. El brillante Venus que ya lleva unas semanas apareciendo en el crepúsculo vespertino se va separando angularmente del Sol y apareciendo sobre un fondo más oscuro que le da más relevancia, mientras Saturno realiza el movimiento aparente opuesto y después de haber estado al principio de la noche en nuestros cielos va a cesar pronto en su función.

El día 10 de enero Saturno, en la parte superior de la imagen, aún se encontraba a 14º de Venus, que aparece en la parte inferior.

El día 10 ya se pudo ver a los dos planetas en una misma zona del cielo. Si nos fijamos en la estrellita que está junto a Saturno (delta de Capricornio o Deneb Algedi), prácticamente mantendrá con ella su posición relativa, lo que indica que es Venus el que se acerca, a pesar de que parece lo contrario.

Efectivamente, Saturno es el planeta lento, y además en esta época ya se mueve en sentido directo como si quisiera evitar el encuentro, y tiene que ser Afrodita la que se acerque al anciano Cronos (como llamaban los griegos a nuestros dos protagonistas). El hecho de que el Sol también se mueve hacia el Oeste respecto a las constelaciones, produce el efecto erróneo de que es Saturno el que se mueve hacia Venus.

En esta otra imagen del día 15, ya se les ve más cercanos entre sí, separados por poco más de 8º, pero el mayor recorrido lo hace Venus.


Hoy mismo (miércoles 18) a pesar del temporal de lluvia y nieve he podido obtener esta otra foto cuando ha surgido un claro ente las nubes en la zona adecuada:

Cada vez se ven más cercanos

Con sus trayectorias opuestas (respecto al Sol), ambos se cruzarán precisamente el día del año nuevo: para nosotros el 22 de enero. Desde China estarán separados por solo 41´ (poco más que el diámetro aparente de la Luna) y desde aquí aún más próximos, con 25´de separación, podrán observarse simultáneamente con un telescopio de poca focal en el mismo ocular.

Actualización 23-1

----------------------

Añado un par de imágenes de ayer, día de la conjunción. La primera con la misma focal que las anteriores, y la otra con teleobjetivo

A pesar de que Saturno aparece bastante débil, puede apreciarse a la derecha y encima de Venus

  

Siguiendo la línea de los dos planetas hacia abajo puede verse la estrella Deneb Algedi citada antes, que puede apreciarse en casi todas las anteriores imágenes y da idea del movimiento de los dos planetas sobre el fondo de las estrellas durante estos días que han ido aproximándose.

------------------------------------------

Por si fuera poco, al día siguiente aparecerá por la misma zona una finísima luna dando una imagen espectacular, aunque los dos planetas ya habrán empezado a separarse.

Desde la zona oriental de China, los días 22 y 23, una hora después de la puesta de sol

Por supuesto los chinos no podrán ver la luna el día 22, deberán esperar al 23 y desde lugares con muy buen horizonte y cielo muy limpio, mejor cuanto más al suroeste. 

Desde Europa, anocheciendo ya unas horas más tarde, será muy difícil verla el 22 a pesar de que la inclinación de la eclíptica al atardecer una vez avanzado el invierno juega a nuestro favor, aunque ¿quizás no sea imposible? 

El día 23 se apreciará sin dificultad si tenemos un cielo limpio y un horizonte suroeste bajo, a la izquierda de Venus, formando una bonita configuración.


Pero desde algunas zonas de América podría verse la finísima Luna junto a los dos planetas el mismo día 22 dando una preciosa imagen. Concretamente al oeste de México, USA o Canadá ya habrán pasado 29 horas de la luna nueva cuando aparezca en el crepúsculo vespertino, y con la eclíptica ya muy inclinada por las fechas y en el caso de México también por la latitud, podrá verse. Y al día siguiente sin problema.


En muchos casos Venus servirá como referencia para encontrar la Luna, y no al revés como habitualmente suele ocurrir. Si nunca has visto una luna tan fina, para hacerse una idea pongo ésta que yo fotografié en julio de 2017, y aunque es menguante (29 horas antes de nueva), es simétrica a la de ahora.

Luna de -29 horas

Y aunque con 4 horas más de diferencia, esta otra luna de 2014, acompañada también en esta ocasión por el planeta Venus 

Luna de -32 horas, en la misma imagen que Venus, aunque no excesivamente cerca

El lunes 23 podremos verlo.

En estos viajes, vistos desde nuestra perspectiva, Venus va visitando cada uno de los planetas: el primero fue Mercurio, ahora Saturno, luego será Júpiter formando una pareja muy brillante que no hemos visto al principio de la noche desde 2015, y finalmente se acercará a Marte, aunque tampoco hay que olvidar los encuentros con Neptuno y Urano antes y después, respectivamente, del de Júpiter. Y también la fina luna creciente dará juego en algunas de estas aproximaciones.

Espero contártelo, y por supuesto deseo que no haya muchas nubes y lo puedas admirar en el cielo.

sábado, 2 de julio de 2022

Reloj de sol vertical


Siguiendo con el tema de los relojes de sol, hoy dedico este post a los verticales, que son sin duda los más habituales que podemos encontrar sobre todo en paredes de iglesias, casas antiguas o incluso en elementos exentos como bloques de piedra, cruces, etc.

Relojes verticales clásicos

Es la forma más lógica de ubicar un reloj solar y además la manera de colocarlo lejos del alcance de posibles actos vandálicos. Hoy en día aunque su función de dar la hora se haya sustituido por la ornamental, se siguen elaborando.

Se pueden encontrar algunos relojes solares que con casi obras de arte

La orientación ideal de la pared o el plano vertical sobre el que se trazará el reloj es el sur (en el hemisferio sur la dirección norte). De esta manera recogerá mayor número de horas de sol y además su trazado es mucho más sencillo, siendo las líneas horarias matutinas simétricas con las vespertinas. Este reloj suele recibir el nombre de reloj vertical orientado.

Como habitualmente el edificio no suele tener una pared orientada exactamente al sur, puede elegirse aquella que más se aproxime a esa orientación aunque no es imprescindible, y el reloj recibe el nombre de vertical declinante como el del siguiente gráfico a la derecha.

En ocasiones, y muy frecuentemente en bloques prismáticos acompañando a relojes de otra orientación, se trazan en planos verticales orientados exactamente al este o al oeste, y reciben el nombre de relojes laterales como este de la izquierda

Un reloj lateral Este acompañado de un vertical orientado y un lateral oeste en un mismo bloque (no se ve por estar detrás), y un vertical declinante

Según la orientación funcionarán más o menos horas y en una parte u otra del día. Por ejemplo el lateral Este solo funcionará por la mañana, o un reloj que decline un poco al Oeste recogerá más horas de la tarde que de la mañana. Hay que resaltar que ningún reloj vertical recogerá todas las horas de sol del año y en el caso más favorable, el reloj vertical orientado, en primavera y verano no funcionará las primeras y últimas horas del día en que la posición del sol tiene componente norte (en el hemisferio norte)

De cara a practicar la elaboración de estos relojes y trabajar de manera cómoda, se pueden realizar diversos modelos en cartón o madera, que se colocarán luego en la orientación adecuada. Así se podrá familiarizar con el trazado de los diferentes elementos, y posteriormente se puede ya intentar hacerlo en una pared.

Una manera de comenzar con un proyecto de este tipo: El gnomon sería un triángulo de madera o cartón, más fácil de colocar que una varilla metálica, la línea de las 12 queda vertical y el resto se calculan como se describe más adelante.

Reloj vertical orientado

 Si la pared sobre la que se va a trazar el reloj está orientada exactamente al sur (en el hemisferio Sur orientada al norte) las líneas horarias tal como se ha dicho serán simétricas, las de la mañana con las de la tarde, respecto a la línea de las 12 que bajará vertical desde el arranque del gnomon.

Dicho gnomon, al igual que en todos los otros modelos será paralelo al eje de la Tierra, es decir que surgirá de la pared en un plano perpendicular a la misma (en dirección Norte-Sur) y estará inclinado formando un ángulo con la horizontal igual a la latitud del lugar.

El trazado de las líneas horarias puede hacerse de manera análoga al reloj horizontal, utilizando un reloj ecuatorial (en el que dichas líneas están separadas entre sí por 15º) que tenga el mismo gnomon que el vertical. En la arista común a ambos relojes se anotan las posiciones de los extremos de las líneas horarias del ecuatorial, y esos puntos se unen con el arranque del gnomon en el vertical.

O también utilizando fórmulas trigonométricas como se describe en el anexo.

Trazado de las líneas horarias. las de las 6 y las 18, horizontales y que pasan por el punto de partida del gnomon (P), lógicamente no se encontrarán con las del reloj ecuatorial y teóricamente solo recibirían sombra un instante en la salida y puesta del Sol en los equinoccios, pero pueden trazarse como referencia para la primera y última hora. Lo que no tiene sentido es trazar líneas por encima del punto P (como se puede encontrar en algunos lugares) porque lógicamente la sombra del gnomon nunca se proyectará hacia arriba. 

En la práctica resulta incómodo este proceso de trazado y puede realizarse de manera análoga a como se indicó en el caso del reloj horizontal, desplegando la figura en sendos papeles que se colocarán contiguos y que representarán uno al reloj ecuatorial (con líneas cada 15º) y otro al vertical donde se obtendrán las líneas horarias que necesitamos y que luego se trasladarán a la pared o plano vertical calcando las líneas o midiendo los ángulos entre ellas y trazándolos en la pared.

 

 Reloj vertical declinante

Cuando se va a colocar un reloj solar en una pared, ésta casi nunca estará orientada exactamente al sur, dando lugar a un reloj denominado vertical declinante. Aunque puede hacerse un reloj solar en cualquier orientación, esto limitará el número de horas de funcionamiento y complica el trazado de las líneas horarias y la colocación del gnomon.

Si la pared está algo girada hacia el Este recogerá más horas por la mañana que por la tarde estando más próximas entre sí, y lo contrario ocurrirá si está hacia el Oeste, como en estos dos ejemplos, en el segundo más que en el primero:

Por ese motivo, cuando la pared no estaba orientada exactamente al Sur en ocasiones se giraba el sillar donde se trazaría el reloj para que éste quedase justo hacia el sur y fuese más fácil el trazado, como en los siguientes ejemplos:


No obstante lo más elegante es trazarlo sobre la pared, y para ello lo primero que hay que hacer es calcular la orientación exacta de dicha pared, que podría hacerse con una brújula, GPS, ... etc., aunque el método tradicional es utilizar el propio Sol.

Para ello se coloca una hoja de papel sobre un plano (por ejemplo un rectángulo de madera) bien nivelado en el suelo junto a la pared y siguiendo la línea de ésta. Delante se coloca una plomada sujeta en un soporte, de manera que dé sombra sobre el papel.

En el instante del mediodía solar verdadero se marca en el papel esa sombra que indica la dirección Norte-Sur y solo falta medir con un transportador el ángulo Beta que determina esa línea con la pared. A su complementario 90º-Beta se le denomina declinación de la pared.

Es muy importante tener en cuenta que el mediodía, momento en que el Sol se sitúa exactamente en el Sur, depende de la longitud geográfica del lugar (por cada grado oeste 4 minutos más tarde) y de la ecuación del tiempo en la fecha de la medición. (La gráfica de esta función aparece en este artículo) Si no se conocen estos valores hay que utilizar uno de los otros métodos indicados.

Si efectivamente la pared no está orientada al Sur, el gnomon no estará contenido en un plano perpendicular a la pared, sino formando un ángulo horizontal respecto a esa perpendicular igual a la declinación de la pared.

Las líneas horarias pueden trazarse a partir de un reloj horizontal con el mismo gnomon de forma similar a como se utiliza el reloj ecuatorial para obtener las líneas en el vertical orientado, como se ilustra en el siguiente gráfico.

Las líneas no serán simétricas respecto a la del mediodía. Si declina hacia el Oeste como el del gráfico anterior (supuesto en el hemisferio norte), aparecerán más líneas de la tarde que de la mañana y estarán más juntas entre sí.

Si estamos en el hemisferio sur, tanto los puntos cardinales como las posiciones de las 6 y 18 horas serían las opuestas.

Antes de continuar conviene recordar que el reloj solar nos indicará la "hora solar verdadera", que es diferente a la hora oficial, como se recogió y explicó en "La hora de los relojes de Sol".


 Relojes laterales y reloj orientado al Norte

Si la pared está orientada al Este o al Oeste el reloj declinante sería especial por varios motivos:

- Si está orientado al este solo funcionará por la mañana, y está al oeste por la tarde.

- El gnomon queda en un plano paralelo a la pared y fuera de ella, por lo que hay que sujetarlo a la misma con algún soporte.

- Las líneas horarias lógicamente no pueden confluir con el gnomon, son paralelas entre sí, con la inclinación de la latitud como el gnomon, y lo que hay que determinar es su separación o distancia desde la altura del gnomon donde estaría la línea de las 6 de la mañana si el reloj está orientado al Este o las 18 si está al Oeste.

Un reloj casi casi lateral Oeste

Para trazar las líneas horarias en los relojes laterales se puede partir de un teórico reloj vertical orientado al Sur obtenido previamente, que estuviese o se colocase junto al lateral, de manera que compartieran el gnomon.


Los puntos de la intersección de los dos planos, y que corta a las líneas horarias del reloj orientado pertenecen también a las líneas horarias del lateral, que se prolongarían de manera similar al gnomon, paralelas a él.


Un caso muy especial es el de un reloj orientado exactamente al norte (y situado en el hemisferio norte) u orientado al sur en ese hemisferio. Solo funcionaría a primeras y últimas horas del día en primavera y verano en que el Sol tiene esa componente.



Las líneas de las 6 y 18 estarían horizontales, las de las 7 y 17 se trazan exactamente igual que en el vertical orientado al sur, y las 5 y 19 se dirigen hacia arriba de manera simétrica a las anteriores, con el mismo ángulo. El gnomon también estaría hacia arriba un ángulo igual a la latitud.

 


Es frecuente encontrar varios relojes solares integrados en un mismo elemento. En este prisma se sitúan 4 relojes, y en la imagen pueden verse uno orientado al oeste y otro al sur (en sombra).


Si estamos interesados en elaborar un reloj solar, o simplemente en observarlos, siempre hay que tener en cuenta que la hora que marcan estos instrumentos antes era la oficial pero ahora no, y que hay que considerar varias circunstancias que se recogen en "La hora de los relojes de sol


- Si queremos usar fórmulas trigonométricas para realizar el trazado de las líneas, en el vertical orientado quedarían:

La línea del mediodía (12 hora solar) se trazará siempre vertical desde el arranque del gnomon, y a partir de ella se dibujan las demás:

 A partir del reloj ecuatorial que tiene ángulos iguales de 15º:


 

- En el caso del vertical declinante la deducción de las fórmulas es más compleja; Se hace a partir del reloj horizontal y se obtienen los ángulos beta que forman las líneas horarias con la de las 12:

los ángulos alfa son los que se obtuvieron para el reloj horizontal en un post anterior, y la deducción de esta fórmula prefiero incluirla en un segundo anexo.

Si nuestro reloj va a estar ubicado en una pared, la colocación precisa del gnomon puede no ser sencilla porque hay que tener en cuenta dos ángulos: la latitud y la declinación de la pared. Un método que utilizo yo es elaborar una guía en cartón que contenga esos ángulos por lo que una de las aristas está orientada adecuadamente si ponemos el objeto horizontal, y una vez taladrado en la pared siguiendo aproximadamente esa dirección y dejando una cierta holgura, introducir el gnomon, junto a él la guía nivelada, y modificar si fuera preciso la posición del gnomon.

Pieza auxiliar para colocar el gnomon. En el gráfico de la izquierda la pared declina hacia el Este y en la foto de la derecha, en que está visto desde abajo, hacia el Oeste.

Otra solución muy utilizada es la que aparece en la primera imagen de este artículo y repito aquí: El gnomon va unido a otra varilla horizontal que se sujetará también en la pared, y ambas forman el ángulo de la latitud, con lo que solo faltará girar el conjunto para que esté dirigido hacia el Sur.



- En el reloj lateral:

 Por el método trigonométrico se puede calcular la distancia (AB) de cada línea horaria a la línea de las  6h (o las 18 si está orientado al oeste) que está a la altura del gnomon



En este caso la deducción es muy sencilla y utilizando el triángulo ABD se obtiene: AB=AD / Tan (a), siendo  el ángulo correspondiente a la línea de la misma hora en el reloj vertical orientado, y que será también el del triángulo ABD.




Incluyo aquí la deducción de las fórmulas trigonométricas que darían los ángulos que separan las líneas horarias de un reloj vertical declinante con la de las 12, a partir de uno horizontal. No suelo incluir estos laboriosos desarrollos en este blog "para todos los públicos, pero en este caso hago una excepción porque es de cosecha propia.